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Abstract of Thesis 

An Efficient Mesh-Free Particle Method for Modeling of Free Surface and Multiphase Flows 

Numerical methods have been used extensively in modeling of free surface flows. 

These methods are generally classified into two categories; grid methods, and particles 

methods. In recent years, particle methods are gaining further attentions among numerical 

model developers for simulation of free surface flows. Computer simulation using particles 

has the capacity to analyze more complex geometry and physics than grid methods. 

Particularly, topological deformation of the fluid can be analyzed efficiently by particles, 

while it is hard and sometimes not possible to fit and move a grid continuously in such 

domains. Also, convection is directly calculated by the motion of particles without 

numerical diffusion. In addition, grid generation which recently seems to be used to 

analyze complex domains is not necessary, eliminating a significant portion of 

computational time. Although it is necessary to initialize configurations of particles in 

particle methods, this is much easier than grid generation as there is no need to set up 

topological relations among the particles. Problems with severe and sharp changes of free 

water surface can be simulated successfully with numerical methods based on the 

Lagrangian approach. 

  In this research the development of a numerical method based on the Lagrangian 

formulation to solve the Navier-Stokes equations is reported. Navier-Stokes equations are 

the governing equations of the fluids; a set of coupled partial differential equations that 

describe how the density, pressure, and velocity of a moving fluid are related. The Navier-
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Stokes equations are solved by the Moving Particle Semi Implicit (MPS) method, a mesh-

free particle method. A fractional step method is applied which consists of splitting each 

time step in two steps. The fluid is represented with particles, and the motion of each 

particle is calculated based on the interactions with the neighboring particles covered by a 

kernel function. 

In general, the contributions of this research can be categorized into three distinct parts: 

1. Application of the MPS method is shown through the successful simulation of 

two sample complex free surface flows. Compared to the similar former studies 

focused on the application of this method, this research implements a newly-

introduced kernel function. It is shown that by utilizing this new kernel function 

the stability of the simulations is significantly enhanced. 

2. A multiphase MPS method is proposed for incompressible flows. The 

multiphase system is treated as a multi-density multi-viscosity fluid. A single 

set of governing equations is solved on the whole computational domain, and 

high-order accurate density and viscosity schemes are applied to stabilize the 

fluid pressure and shear stress fields. The proposed method is utilized for 

modeling of granular flows and sediment transport.  

3. An algorithm is introduced to enhance the efficiency of the mesh-free particle 

methods. This algorithm enables the implementation of sets of particles with 

different sizes in one computational domain.  
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Chapter 1 : Introduction 

Incompressible fluid motion is governed by the so called Navier-Stokes equations, a set 

of coupled and nonlinear partial differential equations derived from the basic laws of the 

conservation of mass, momentum, and energy. In this set of equations, the unknowns are 

usually the velocity, density, pressure, and temperature. The analytical solution of these 

equations is practically impossible due to the nonlinearity of the governing equations. Thus, 

in the past, scientists had to provide simplifications and approximations to the equations 

until they had a set of equations that was analytically solvable, or they had to resort to 

laboratory experiments. However, the experimental results might be qualitatively different 

as it is difficult to enforce the dynamical and geometric similitude simultaneously between 

the prototype and the experiment. An example is the Reynolds’ number similarity which 

can turn a turbulent flow to a laminar flow if violated.  There are also some phenomena that 

cannot be reproduced experimentally, such as ocean, weather, etc. Moreover, the 

construction and design of the laboratory experiments can be costly or difficult. 

1.1. Computational fluid dynamics 

Computational fluid dynamics, abbreviated as CFD, is an additional tool for simulation 

of the fluid flow. CFD is a computational technology that enables the scientists to study the 

dynamics of fluids. Using CFD, scientists can build a computational model that is 

representing the device or system they want to study. Then, by applying the physics of the 
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fluid flow to this virtual prototype, the software will output a prediction of the fluid 

dynamics. The benefits of using CFD in simulation of fluid flow include the following: 

• Insight: There are numerous systems that are difficult to prototype. Often, CFD 

can represent features of the phenomena happening within the system that 

cannot be visible or captured by any other means. CFD gives the scientists a 

means of visualizing and an enhanced understanding of their design or the 

system under their study. 

• Foresight: As the CFD is a tool for the modeling and prediction of what will 

happen under a set of given conditions, it can quickly and efficiently answer 

many “what if” questions. Given the variables, it gives the outputs. Within a 

short time, scientists can predict how their design will perform, and test many 

variations until they arrive at an optimal result. All of this is done prior to 

physical prototyping and testing. The foresight gained from CFD helps for 

faster and better design. 

• Efficiency: Faster and better analysis or design leads to shorter design cycles. 

Time is saved, and costs are reduced. 

The central process in CFD is the discretization process. Within this process, the 

governing differential equations with infinite number of degrees of freedom are reduced to 

a system of finite degrees of freedom. Therefore, instead of determining the solution for all 

times in everywhere in the computation domain, calculations are performed at specified 

time intervals and at a finite number of locations in the domain. The partial differential 

equations are then reduced to a system of algebraic equations that can be solved on a 

computer. 
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Errors creep in during the discretization process. The nature and characteristics of the 

errors must be controlled, ensuring that we are solving the correct equations (consistency 

property), and that the error can be reduced as we increase the number of degrees of 

freedom (stability and convergence). Once these two criteria are established, the power of 

computing machines can be leveraged to solve the problem in a numerically reliable 

fashion. 

1.2. Free surface flow 

In fluids, a free surface is the surface that is subject to zero parallel shear stress and zero 

perpendicular normal stress. Free surface flows are common in nature and in man-made 

structures. Examples of this type of flows include water waves in ocean and coastal zones, 

flow in rivers and estuaries, and flow around the hydraulic structures such as dams. 

Analysis of the free surface flow is significantly more complex than the closed conduit 

flows. The contributing forces causing and resisting motion and the inertia must form a 

balance such that the free surface is a streamline along which the pressure is constant and 

equal to the atmospheric pressure. This extra degree of freedom in free surface flow means 

that the flow boundaries are no longer fixed by the conduit geometry, as in closed conduit 

flow, but rather the free surface adjusts itself to accommodate the given flow conditions 

(Sturm 2010). Another characteristic of the free surface flow is the extreme variability in 

the free surface profile and in the cross-sectional shape and roughness. In free surface flow, 

often large deformation and fragmentation of the free surface exists. 

The limitation of the experimental study of flow is more significant in case of the flow 

associated with free surface. The detailed measurements of the fluid flow features such as 
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free surface profile, velocity distribution, and pressure in very difficult in experimental 

studies. Alternatively, CFD is a strong tool for analysis of such flows. The capability to 

computationally model these types of flows is attractive if such computations are done 

accurately, with reasonable computational resources. 

Many computer programs can solve the partial differential equations describing the 

dynamics of fluids. However, not many programs are capable of including free surfaces in 

their simulations. The difficulty is a classical mathematical one often referred to as the free-

boundary problem. A free boundary poses the difficulty that on the one hand the solution 

region changes when its surface moves, and on the other hand, the motion of the surface is 

in turn determined by the solution. Changes in the solution region include not only changes 

in size and shape, but in some cases, may also include the coalescence and break up of 

regions (i.e., the loss and gain of free surfaces) (Hirt and Nichols 1981). 

1.3. Eulerian and Lagrangian viewpoints 

The Eulerian description of the fluid motion records the evolution of the fluid flow 

properties at every point in space as the time proceeds. It describes the flow using 

quantities as a function of the spatial location and time. This viewpoint has us watch a fixed 

point in space with specified coordinates as the time varies. The Eulerian viewpoint can be 

visualized as sitting on a river bank and watching the flow passing from a fixed point.  

In Lagrangian viewpoint of fluid mechanics, the attention is focused on material 

particles as they move through the fluid flow. Each fluid particle (parcel) carries its own 

properties such as velocity, density, momentum, etc. The properties may change in time as 
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the particles advance. This viewpoint can be visualized by sitting in a boat and drifting 

down a river.  

1.4. Mesh-free particle methods 

Numerical methods are generally classified into grid methods and particle (mesh-

less/mesh-free) methods. Particle methods, in comparison with the grid-based methods, 

have the advantage of tracking the free surfaces and multi-interfaces naturally without extra 

complicated algorithms. Unlike the grid-based methods, mesh-free discretization 

techniques are based only on a set of independent points which eliminate the cost of mesh 

generation. Moving boundaries and interfaces can be analyzed by particle methods much 

easier than by finite element methods as it is hard to fit and move a mesh continuously 

(Idelsohn et al. 2002). Moreover, in particle methods the convection term is calculated by 

the motion of particles and thus, numerical diffusion, which is a problem in finite 

difference methods, does not take place. For a comprehensive review on mesh-free 

methods readers are referred to (Liu 2010; Liu and Gu 2005; Nguyen et al. 2008; Li and 

Liu 2002). 

The Smoothed Particle Hydrodynamics (SPH) method is one of the earliest mesh-free 

methods. It was initially developed to solve problems in astrophysics that involve fluid 

masses moving arbitrary in three dimensions in absence of boundaries (e.g. Lucy 1977; 

Gingold and Monaghan 1977; Monaghan 1988). Later this method was generalized to 

solve fluid mechanic problems (e.g. Monaghan 1994; 2005; Dalrymple and Rogers 2006). 

The SPH method is capable of dealing with free surface flow, multiphase flow, deformable 
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boundary, moving interface as well as problems which consist of extremely large 

deformation. 

Diffuse Element Method (DEM) is the first weak-form meshless method introduced by 

Nayroles et al. (1992). Weak-form methods solve an integral function instead of solving a 

differential equation of the underlying problem. In the DEM method, the governing 

equations are discretized by a Galerkin weak-form over the problem domain. Shape 

functions are created using the Moving Least Square (MLS) method (Lancaster and 

Salkauskas 1986). However, in order to compute the integrals derived from the Galerkin 

approach, a set of background mesh is necessary.  

Belytshko et al. (1994) proposed the Element-Free Galerkin (EFG) method as the 

improved version of the DEM method. Using Galerkin approach to discretize the 

governing equations, the stiffness matrices are symmetric. Essential boundary conditions 

are implemented efficiently by penalty method. EFG is an accurate and efficient method as 

the rate of convergence is higher compared to the Finite Element Method (FEM) (Shobeyri 

and Afshar 2010). The EFG can be implemented accurately for both regular and irregular 

special discretization. Since the integrals are calculated on a background cell structure, this 

method is not a completely mesh-free method. The EFG method has been applied to a 

variety of engineering applications such as unsteady nonlinear heat transfer (Singh et al. 

2007), 2D elastic analysis (Liu et al. 2008), and 3D structural analysis (Chen and Guo 

2001). 

The Meshless Local Petrov–Galerkin (MLPG) is a mesh-free method proposed by 

Atluri and Zhu (1998). No background mesh is necessary for interpolations and 

integrations in this method. To implement the numerical integrations, a local quadrature 
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domain with a regular and simple shape is defined for each field node. Similar to the EFG 

method, shape functions are created by the MLS approximation. The efficiency of the 

MLPG is adversely affected by asymmetric coefficient matrix. The MLPG also encounters 

some difficulties when numerical integrations are carried out for nodes on and around the 

boundaries. The MLPG has been implemented in simulation of a wide range of engineering 

problems such as fluid dynamic and heat transfer problems (Lin and Atluri 2001; 

Arefmanesh et al. 2005) and solid mechanic problems (Atluri et al. 2006). 

The Finite Point (FP) method proposed by Onate et al. (1996) combines a weighted 

least square approximation of the unknowns over each local interpolation domain with a 

stabilized point collocations procedure which eliminates any numerical instability (Löhner 

et al. 2002). Examples of applications of the finite point method have been shown in 

successful simulation of advection diffusion (Onate and Idelsohn 1998) and incompressible 

flow (Onate et al. 2000) problems. 

A mesh-free numerical method, called the moving particle semi implicit (MPS) 

method, was proposed by Koshizuka and Oka (1996) and Koshizuka et al. (1998) for 

simulation of free surface flows. In this method, Navier-Stokes equations are solved in a 

fully Lagrangian form using a fractional step method which consists of splitting each time 

step in two steps. The fluid is represented with particles. The motion of each particle is 

calculated through interactions with neighboring particles by means of a kernel function. 

Stability of the simulations, efficiency and ease of free surface tracking using Lagrangian 

particles, straightforward boundary treatment and ease of coding are the advantages of 

using this method in modeling of free surface flows. 
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The MPS and SPH methods are similar in that they both provide approximations to the 

strong form of partial differential equations on the basis of integral interpolants. The major 

difference between the two methods is that unlike the SPH, the MPS method applies a 

simplified differential operator model which is only based on a local weighted averaging 

process without taking the gradient of a kernel function (Koshizuka and Oka 1996; 

Koshizuka et al. 1998). Additionally, the semi-implicit prediction-correction process of the 

MPS has shown better stability compared to the fully explicit conventional SPH method 

(Koshizuka and Oka 1996; Koshizuka et al. 1998). 

The MPS method has gained a lot of interest among numerical modelers in the past 

decade and has been successfully applied to a variety of complex hydraulic problems such 

as dam break in 2D (Ataie-Ashtiani and Farhadi 2006; Khayyer and Gotoh 2009) and 3D 

(Shakibaeinia 2011), hydraulic jump formation (Shakibaeinia and Jin 2010; Shakibaeinia 

and Jin 2011), breaking waves on slopes (Koshizuka et al 1998), and landslide-induced 

water waves (Nabian and Farhadi 2014a,b,c). In addition, the MPS method has been 

applied to a wide range of engineering applications including ocean engineering (e.g. 

Shibata and Koshizuka 2007), coastal engineering (e.g. Nabian and Farhadi 2014b,c; Gotoh 

et al 2005), mechanical engineering (e.g. Heo et al. 2002), structural engineering (e.g. 

Chikazawa et al 2001), chemical engineering (e.g. Sun et al. 2009) and bioengineering (e.g. 

Tsubota et al. 2006). 
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1.5. Research Objective 

The main objectives of this research are: 

 a) Showing the application of the MPS method in modeling of complex free 

surface flows: Application of the MPS method is shown through the successful simulation 

of rockslide-induced and landslide-induced water waves. The stability of this method is 

improved by utilizing a newly-introduced kernel function (Ataie-Ashtiani and Farhadi 

2006). It is shown that compared to other common kernel functions in the mesh-free 

methods, the utilized kernel function will provide significantly better stability.  

b) Developing a multiphase MPS algorithm: The applicability of the MPS method is 

enhanced by introducing a new algorithm, extending the MPS method for simulation of 

multiphase flows and granular flows.  

c) Developing an algorithm for improving the efficiency of the MPS method: 

Efficiency of the MPS method is improved by proposing a new algorithm allowing the 

numerical models to utilize sets of particles with different sizes in one computational 

domain, enabling allocation of reasonable computational resources to those parts of the 

computational domain with relatively low complexity in fluid flow.  

Each of the proposed improvements is followed by a number of verification tests to 

show the accuracy and stability of the numerical models. In these sets of simulations, fluid 

is considered incompressible and viscid. Only low Reynolds number flows are considered 

in this research and thus, no turbulence model is applied to the simulations. 



www.manaraa.com

10 

 

1.6. Organization of thesis 

The thesis is organized in the following way: Chapter 2 provides an introduction to the 

MPS method and how this method treats the boundaries and interfaces. Chapter 3 presents 

the results for the simulation of rockslide-induced and landslide-induced water waves to 

show the application of the MPS method in simulation of complex free surface flows. This 

application section is then followed by a discussion on the effect of different kernel 

functions on the stability of the MPS method and how the kernel function utilized in this 

research will contribute to stability of the MPS method. There is also a comparison 

between the MPS method and another simplified form of this method, the explicit form, 

from the accuracy and performance point of view. 

In Chapter 4, a new algorithm for the simulation of multiphase flows is introduced 

based on the MPS formulation. This algorithm is further extended for simulation of 

granular flows and sediment transport. Results for the deformable landslide-induced water 

waves and sediment transport via dam–break are presented and compared with the 

available experimental data for the sake of model verification.  Chapter 5 presents a new 

formulation on how to use particles with different sizes in a computational domain to 

enhance the efficiency of the simulations. Dam-break induced water waves and landslide-

induced water waves are simulated to verify the improvements in efficiency of the method 

while keeping the accuracy at almost the same level. Chapter 6 presents a conclusion and a 

number of suggestions for future work in this area of research. A thorough literature review 

on each of the simulations performed in this research is presented at the beginning of each 

chapter. 
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Chapter 2 : Fundamentals of the MPS Method 

2.1. Governing Equations 

In fluid mechanics, the conservation of mass equation and the conservation of 

momentum equation with Newton’s viscosity law are commonly known as the Navier-

Stokes equations; a set of coupled nonlinear partial differential equations. These equations 

describe how the velocity, density, pressure, and other quantities of a moving fluid are 

related. The Navier-Stokes equations are extensions of the Euler equations (conservation of 

mass and momentum for inviscid flow) by considering the effects of fluid viscosity. For 

incompressible fluid, and in Lagrangian form of fluid description, the Navier-Stokes 

equations are expressed as 

2

1 . 0

1

D
Dt

D P
Dt

ρ
ρ

υ
ρ

 +∇ =

 = − ∇ + ∇ +


υ

υ υ f
 (2.1)  

in which ρ  is the fluid density, t  is time, u  is the velocity vector, P  is pressure, υ  is 

kinematic viscosity of fluid and f  is the gravity acceleration. Note that there is no 

convective acceleration term in momentum conservation equation in the Lagrangian 

system. Therefore, one of the sources of error resulting from discretization of governing 

equations is eliminated. 

The derivative with respect to a variable, i.e. the time herein, is called the material 

derivative: 
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( )( ) ( ) . ( )D
Dt t

∂
≡ + ∇

∂
u   (2.2) 

In Lagrangian description, the material is referred to fluid parcels. Equation (2.2) means 

that the amount of change of a variable (in time) in Lagrangian coordinates consists of a 

temporal change plus a spatial change. The temporal change is observed in Eulerian 

coordinate and the spatial change is due to the change in moving coordinate (Chen 2014).  

2.2. MPS Interpolations  

In the MPS method, the motion of each particle is calculated based on the interactions 

with neighboring particles covered with a kernel (weight) function. Table 1 and Figure 1 

show 6 commonly used kernel functions in mesh-free methods. KF1 is the most common 

kernel function in the MPS method, suggested by Koshizuka et al. (1998) for simulating 

incompressible, inviscid flows. Belytschko et al. (1996) proposed an exponential (KF2), a 

quartic spline (KF3) and a cubic spline (KF4) kernel function. KF5 is introduced by 

Koshizuka and Oka (1996) for simulating incompressible, viscid flows by MPS method. 

Shao and Lo (2003) proposed KF6, which is the commonly used kernel function in the 

SPH method. This kernel function is introduced to simulate Newtonian and non-Newtonian 

flows with a free surface using incompressible SPH method. 
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Table 1: Formulation of the different kernel functions 
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al. 1998) 
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Figure 1- Shape of the different kernel functions 

( )w r is a kernel function. r  is the distance between two fluid particles and er  is the kernel 

size (see Figure 2). The value of the kernel functions out of the kernel size ( er r> ) is zero. 

There are stability issues with the MPS method as some of the common kernel functions in 

this method do not realistically model the particle interactions (Ataie-Ashtiani and Farhadi 

2006). Ataie-Ashtiani and Farhadi (2006) performed a study on the effect of the kernel 
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functions introduced in Table 1 on the stability of dam-break simulation using the MPS 

method. Based on their study, the cubic spline kernel function (KF6) formulated by Shao 

and Lo (2003) is shown to improve the stability of the MPS. This kernel function is used 

herein in this research to improve the stability of the simulations.  

 

Figure 2- Definition of particle spacing and kernel size. 

In the MPS method, particle number density is defined as 

(| |)j ii
i j

n w
≠

= −∑ r r  (2.3) 

r  is the position vector. The subscripts denote a specific particle. In this equation, the 

contribution of particles to themselves does not take part in the summation. Once the 

particle number density is divided by the volume occupied by neighboring particles of the 

reference particle i , the number of particles in a unit volume, denoted by iN , is calculated 

as 

( )
i

i

V

n
N

w r dv
=
∫

 (2.4) 
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Assuming all the fluid particles have the same mass, m , the fluid density, ρ , is 

expressed as 

( )
i

i i

V

m n
m N

w r dv
r = =

∫
 (2.5) 

Equation (2.5) shows that the fluid density is proportional to particle number density. 

Accordingly, in incompressible flows, far from the free surface, particle number density 

should be constant. This constant value is denoted by 0n . 

Koshizuka and Oka (1996) expressed particle interaction models for differential 

operators. The gradient operator is given as 

0 2 ( ) (| |)
| |

j i
j i j ii

i j j i

d w
n

φ φ
φ

≠

−
∇ = − −

−∑ r r r r
r r

 (2.6) 

where ϕ  is an arbitrary scalar, ϕ̂  is the minimum value of that scalar among the 

neighboring particles of the reference particle i , and d  is the number of space dimensions.  

The term ˆj ijj −  always remains positive which keeps repulsive forces between the 

particles. 

The Laplacian operator is modeled in a transient diffusion problem and expressed as 

2
0

2 [( ) (| |)]j i j ii
i j

d w
n

φ φ φ
λ ≠

∇ = − −∑ r r  (2.7) 

The role of parameter λ  is to keep the variance increase equal to the analytical solution and 

is given by 
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2( )

( )
v

v

w r r dv

w r dv
λ = ∫

∫
 (2.8)

 

2.3. Solution Method 

2.3.1. Time splitting 

Following the approach of Zienkiewicz and Codina (1995), the time differentiation of 

the particle densities can be split as 

1 1 * * *n n n nD
Dt t t t
ρ ρ ρ ρ ρ ρ ρ ρ ρ+ + ′− − + − D + D
= = =

DDD 
 (2.9) 

Likewise, the particle acceleration term in the momentum conservation equation can be 

expressed as 

1 1 * * *n n n nD
Dt t t t

+ + ′− − + − D + D
= = =

DDD 
u u u u u u u u u

 (2.10) 

Using the presented time differentiation of the particle densities and velocities, the mass 

and momentum conservation equations can be respectively written as 

*
1 * *1 .( )n

t
ρ ρ

ρ
+′∆ + ∆

= −∇ − +
∆

u u u  (2.11) 

*
21 P

t
υ

ρ
′∆ + ∆

= − ∇ + ∇ +
∆

υυ  υ f  (2.12) 

To apply the semi-implicit prediction-correction scheme, the mass conservation 

equation is written in two steps as 
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*
*1 .

t
ρ

ρ
∆

= −∇
∆

u  (2.13) 

1 .
t
ρ

ρ
′∆ ′= −∇ ∆

∆
u  (2.14) 

In a similar way, the conservation of linear momentum equation is written in two steps as 

*
2n n n

t
υ∆

= ∇ +
∆
υ υ f  (2.15) 

11 nP
t ρ

+′∆
= − ∇

∆
u

 (2.16) 

2.3.2. Prediction step 

At the prediction step, the viscous and gravitational forces are explicitly calculated 

without enforcing the incompressibility to the fluid and an intermediate velocity and 

position is obtained for each particle as 

* 2

* *

n n n
i i i i

n
i i i

t t
t

υ∆ = ∇ ∆ + ∆


= + ∆ ∆

υυ  f
r r υ

 (2.17) 

2.3.3. Pressure Poisson equation 

At the prediction step, fluid incompressibility is not enforced. Accordingly, the fluid 

density at the intermediate time step, *ρ , has deviated from the initial fluid density, 0ρ . As 

it is previously shown, there is a direct relation between the particle number density and the 
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fluid density. Hence, to satisfy the incompressibility, the particle number density is 

implicitly corrected to 0n by 

* 0n n n′+ ∆ =  (2.18) 

n′∆ is the difference between constant particle number density and the particle number 

density at the intermediate time step. 

Using the particle number density as the representative of density, Equation (2.14) can 

be expressed as  

0

1 .n
n t

′∆ ′= −∇ ∆
∆

u  (2.19) 

By simply combining the equations (2.16), (2.18), and (2.19), a Poisson equation of 

pressure is obtained 

* 0
2 1

2 0
n i

i

n n
P

dt n
ρ+

−
∇ = −  (2.20) 

2.3.4. Correction step 

The Poisson equation of pressure (equation (2.20)) can be turned to a system of linear 

equations by replacing the left side of the equation by the Laplacian model expressed in 

equation (2.7). Once the system is solved and the pressure is calculated, it is replaced into 

the gradient model (equation (2.6)) to calculate the pressure gradient. The pressure gradient 

is then replaced in equation (2.16) and accordingly, the velocity correction is calculated. 



www.manaraa.com

20 

 

Finally, the velocity and position of the particles at the end of each time step are calculated 

as 

1 *

1 1

n

n n n t

+

+ +

′ = + ∆


= + ∆

u u u
r r u

 (2.21) 

The step by step calculation algorithm of the MPS method is shown in Figure 3. 

2.4. Weakly compressible model 

Monaghan (1994) modified the equation of state given by Batchelor (1973) to simulate 

the free surface flows with the SPH method. This equation of state has the form of 

2
0

0

1CP
γ

ρ ρ
γ ρ

  
 = −    

 (2.22) 

with γ=7. C is the numerical sound speed. It is shown by Shakibaeinia (2011) that in order 

to keep the fluid density variation less than 1% of the reference density, the Mach number 

(Ma) should be smaller than 0.1, meaning that the numerical sound speed should be ten 

times higher than the maximum fluid particle velocity.  

Using the aforementioned equation of state in the MPS formulation, the pressure can be 

obtained explicitly without solving the Poisson equation of pressure. This explicit method 

is known as weakly–compressible MPS (WC-MPS) method. 
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Figure 3- Calculation algorithm of the MPS method. 

2.5. Boundary Treatment 

In the MPS method, a fluid particle is considered to be on free surface if it meets the 

following condition 

* 0

i
n nβ<  (2.23) 
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Parameter β  is called the free surface parameter. The reference pressure is applied to free 

surface particles as a boundary condition. Approaching solid boundaries, the density of 

particles will decrease and accordingly, they may satisfy the free surface boundary 

condition and be considered on the free surface. To avoid this issue, few layers of so-called 

ghost particles are simulated outside the solid boundaries to take part in particle number 

density calculations (Figure 4).  

 

Figure 4- Ghost particle recognition. 

The first layer of solid boundaries will take part in pressure Poisson equation 

calculations. As a result, there is always a repulsive force between fluid particles and solid 

boundary particles to avoid sticking of fluid particles to the solid boundaries. 
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Chapter 3 : Landslide-Induced Water Waves 

Landslides, usually caused by slope failures or liquefaction of sediments, can generate 

water waves and small-scale tsunamis in coastal areas. Once the landslide-induced water 

waves reach the coast or structures, they are able to produce disasters including loss of life 

and collapse of facilities and infrastructures. Therefore, it is of importance to predict the 

damage of landslide-generated water waves in flood hazard assessment of coastal zones. 

Due to the importance of water waves generated by landslides, researchers have 

conducted empirical, analytical and numerical studies on this phenomenon. Most of these 

studies are focusing on the rigid underwater landslides. For instance, Wiegel (1955), 

Iwasaki (1982), Heinrich (1992) and Watts (1997) performed experimental studies on the 

characteristics of the water waves generated by the motion of solid blocks or boundaries 

along inclined planes into a channel. Enet and Grilli (2007) conducted large scale, three-

dimensional laboratory experiments to study tsunami generation by rigid underwater 

landslides.  Grilli and Watts (1999) developed a boundary element model to simulate water 

waves due to the motion of a submerged body. Iwasaki (1997) performed several numerical 

studies on water waves generated by rigid submarine landslides, based on the linear 

shallow water wave equations. Heinrich (1992) conducted similar studies using the VOF 

(Volume of Fluid) method. Ataie-Ashtiani and Najafi-Jilani (2006; 2007) provides a 

comprehensive review on numerical and experimental studies on the landslide-generated 

water waves. 
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Modeling surface waves generated by landslides is difficult due to the complex motion 

of the submerged bodies with arbitrary shapes and the wave interaction with the shore line 

which results in non-linearity of governing equations. Therefore, numerical methods have 

been used to overcome such difficulties. In this chapter, the water waves generated by rigid 

vertical landslides and rigid underwater landslides along an inclined plane are simulated by 

the MPS method. Particles configuration, velocity fields, and pressure fields are presented 

at different times. Results are compared with the available experimental data and analytical 

solutions.  

3.1. Vertical Landslide Simulation 

3.1.1. Problem definition 

In this section, the water waves generated by vertical rigid landslide (rockslide) are 

simulated using MPS method. A box, modeling the landslide, descends into an open 

channel partially filled with water, and then generates a solitary wave and a reverse 

plunging wave. Scope and dimensions of this problem are depicted in Figure 5. 

Monaghan and Kos (2000) described an experimental relation for the velocity of the 

descending box (equation (3.1)). In their experiment, the weight of box was 38.2 kg, which 

is sufficient to ensure that the box sinks rapidly. 

0.5

1.03 1V h h
D DgD
 = − 
 

 (3.1) 

V is the box velocity,  D  is the depth of water and  h  is the height of box. At each time 

step, the velocity of box is known so the position of box is calculated. The variation of box 

velocity with respect to its height is sketched in Figure 6. 
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Figure 5- Scope and dimensions of the vertical landslide problem. 

 

Figure 6- Vertical landslide mass velocity at different heights. 

Equation (3.2) shows an analytical solution for the profile of a solitary wave (Lee et al. 

1982) 

 
2

4
3









=

D
X

D
HhsecHh  (3.2) 

where η   is the water surface elevation, H   is the amplitude of wave, D   is water depth 

and )tCx(X w−= . wC  is the solitary wave celerity which is expressed by 

)HD(gCw +=  (3.3) 
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3.1.2. Results and Analysis 

In the present model, the initial particle spacing and the free surface parameter are set to 

0.8 cm, 0.97, respectively. The kernel size is set to twice the initial particle spacing, as 

suggested by Ataie-Ashtiani and Farhadi (2006) in case of using the cubic spline kernel 

function (KF6). The fluid is considered non-viscid. The solution domain is represented by 

8126 particles. Initial time step is set to 0.001s, constrained by the CFL stability condition 

(Courant et al. 1967) and the Courant number is adjusted to 0.4. In addition to one layer of 

solid boundary particles, two layers of ghost particles are considered. 

Figure 7 shows the water surface profile at different times. The box sinks into the 

channel and as a result water is heaved up to form a solitary wave and a reverse plunging 

wave that forms a vortex. This vortex follows the solitary wave to the right side of the 

channel. Around t=1.25s, t=3.4s, t=5.6s, t=7.9s and t=10.5s, the solitary wave strikes the 

right vertical wall and accordingly, the direction of wave propagation is changed. Around 

t=2.2s, t=4.4s, t=6.7s, t=9s and t=11.5s, the solitary wave impinges on the right side of box 

and its direction is changed. At t=17s, the water surface profile is approximately horizontal. 
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Figure 7- Particle Configuration at different times for the vertical landslide simulation.  
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Particle Configuration at different times for the vertical landslide simulation (continued).  
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Particle Configuration at different times for the vertical landslide simulation (continued). 

The wave amplitude is 11.03 cm, measured by the present model. Ataie-Ashtiani and 

Shobeyri (2008) computed almost the same value (11 cm) using I-SPH simulation with a 

Courant number which is 75% less than the value used in this study. Monaghan and Kos 

(2000) obtained 10.8 cm by their SPH simulation and 9.2 cm by experiment for the 

amplitude of solitary wave. However, as there was a gap between the box and left vertical 

wall in the experiment, a narrow stream is moved up the gap. As a result, there was an error 

in measuring the solitary wave amplitude by experiment. To evaluate the value of this 
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error, they performed another similar SPH simulation with presence of the gap. They 

concluded that when the gap opened up in the simulation, about 12% of the wave 

amplitude is reduced. This accounts for the difference between experimental and numerical 

results. 

Figure 8 shows the velocity field at t=0.4s and t=0.8s. At t=0.4s, the fluid particles on 

the right side of box are circuiting in a vortex, created by the reverse plunging wave. The 

velocity magnitude of particles at the right end side of box is high, as the particles tend to 

escape from that high-pressure region. At t=0.8s, the circulation strength is significantly 

decreased, but still some fluid particles are circuiting around a small circuit. The particles 

which escaped from the high pressure region under the box are still moving with high 

velocity to the right side of the channel. 

Figure 9 shows the pressure field at different times computed by the present model. 

Pressure at the region below the box has a significant deviation from hydrostatic pressure. 

This is due to the dynamic pressure exerted by the box. Far from the box, as the dynamic 

pressure disappears, the pressure distribution is hydrostatic. Later, as the particles below the 

box escape due to significant pressure gradient, a high pressure current starts to form from 

below of the box and moves toward the right side of water tank. As this current moves, it 

dissipates due to the pressure gradient between this region and the adjacent area.  

Although scientists proposed some modification to pressure model, still MPS method 

suffers from unphysical pressure fluctuation. Khayyer and Gotoh (2009) proposed a 

modified formulation for the calculation of pressure gradient for exact conservation of 

linear momentum. However, as shown by Shakibaeinia (2011), although this modified 

pressure gradient formulation will result is relatively accurate calculation of pressure field, 
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it may not yield exact calculation of the pressure gradient between two particles, which is 

necessary for the accurate estimation of instantaneous motion of the fluid particles. 

 

Figure 8- Velocity field at different times for the vertical landslide simulation. 
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Figure 9- Pressure field at different times computed by the present model. 

Figure 10 shows a comparison between the present MPS results and the analytical 

solution for the solitary wave profile. To make the analytical solution comparable with the 

simulated solitary wave, the crest of analytical wave profile is adjusted to the crest of 

simulated solitary wave. Note that the two solutions are not expected to fit where the 

plunging wave and vortex are affecting the flow. This is the reason that the x-axis range of 

these plots is limited for the comparison of results. Results show that the predicted solitary 

wave profile by the present model is in good agreement with the analytical solution. 
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Figure 10- Solitary wave profile comparison between the MPS results and the 

experimental data the vertical landslide problem. 

Figure 11 shows a comparison between analytical solution and solution by the present 

model for the horizontal velocity of particles on free surface. The data is smoothed by a 

Laplacian smoothing algorithm to reduce the noise associated with discrete data (Wahba 

1979). The agreement between analytical solution and solution by the present model is 

acceptable. 
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Figure 11- Comparison between analytical solution and solution by the present model for 

the horizontal velocity of particles on the free surface. 

A comparison between the reverse plunging wave measurements by the present model, 

I-SPH (Ataie-Ashtiani and Shobeyri 2008), SPH (Monaghan and Kos 2000), and 

Experimental results (Monaghan and Kos 2000) is tabulated in Table 2. The definition of 

parameters used in these measurements is sketched in Figure 12. The agreement between 

the measurements obtained by the present model, I-SPH simulation and experiment are 

satisfactory. However, the SPH measurements do not match appropriately to the 

experimental results. 
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Figure 12- Definition of the parameters used in reverse plunging wave measurements in 

the vertical landslide problem. 

Table 2- A comparison between the present MPS model, I-SPH, SPH, and experimental 

results for the reverse plunging wave measurements. 

0l  (cm) Method H (cm) R (m) h (m) B (m) 

0.8 MPS 32.60 12.93 22.43 27.07 

1 I-SPH 33.01 14.6 23.4 26.8 

1.5 I-SPH 32.9 13 21.8 25.5 

0.42 SPH 30.86 11.4 20.8 27.2 

0.525 SPH 30.9 10.9 20.3 27.3 

0.7 SPH 30.8 9.9 19.3 26.1 

10.5 SPH 30.8 7.5 16.9 27.3 

--- Experimental 33.3 13.33 22.73 30.3 
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3.1.3. Stability of the model 

The number of free surface particles is used as an indicator of stability of the model. 

Figure 13 shows two sketches for the number of particles on free surface, one up to 2.5s 

and the other up to 40s. Until t=2.5s, the solitary wave has hit the right vertical wall and 

right side of box. From t=0.1s to t=0.5s, the solitary wave, reverse plunging wave and 

vortex start to form and thus, the number of particles on free surface will significantly 

increase. From t=0.5s to t=0.85s, the reverse plunging wave accumulates on the right side 

of box, increasing the number of free surface particles. Meanwhile, the circulation strength 

starts to decrease after t=0.5s, reducing the number of free surface particles. As a result, 

there is a considerable fluctuation on the number of free surface particles between t=0.5s 

and t=0.85s. Around t=0.85s, the plunging wave starts to follow the solitary wave and it 

gradually mixes with the solitary wave. This makes the water surface profile more uniform, 

and thus the number of particles on free surface will start to decrease gradually from 

t=0.85s until it reaches an approximately stable range at around 1.6 s. As there is no 

unphysical variation or fluctuation in the number of particles on free surface and the 

simulation is performed without instability occurrence for a long period (40s), it can be 

concluded that the present model is stable. Despite the SPH (Monaghan and Kos 2000) and 

I-SPH (Ataie-Ashtiani and Shobeyri 2008) which represent the results only up to 0.7s, the 

MPS simulates the problem until 17s, when the water surface profile becomes almost 

horizontal, without any instability occurrence. 
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Figure 13- Number of particles on free surface in the vertical landslide simulation, (a) up 

to 2.5s, (b) up to 40s. 
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3.2. Submarine Landslide Simulation 

3.2.1. Introduction to the Problem 

In this section, the water waves generated by submarine landslides are simulated using 

the MPS method. Landslides herein are modeled by a submerged triangle rigid box sliding 

along an inclined plane into an open channel filled with water. Scope and dimensions of the 

present problem are depicted in Figure 14. 

 

Figure 14- Scope and dimensions of the submarine landslide problem. 

Grilli and Watts (1999) have described the vertical velocity of the landslide mass. 

During the acceleration phase which lasts for 0.4 seconds, the vertical velocity of the rigid 

landslide mass is described as 

 1 2( ) tanh( ) 0.4v t c c t t s= ≤  (3.4) 

Where )t(v  is the vertical velocity of box at time t . 1c  and 2c  are constant values. 

Ataie-Ashtiani and Shobeyri (2008) set 86 cm/s and 0.0175 s-1 for the values of 1c  and 2c  
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in their I-SPH computation, respectively. The same values are used in the current 

simulation. After the acceleration phase, the vertical velocity of the sliding mass reaches a 

terminal value of s/m.60 . At each time step the velocity of the sliding mass is known; 

thus, its position is calculated. 

3.2.2. Results and Analysis 

In the present model, free surface parameter and the kernel size are set to 0.99 and 5cm, 

respectively. The fluid is considered non-viscid. The solution domain is represented by 

6242 particles, in which the initial distance between particles is 2.5 cm. Initial time step is 

0.001s. The Courant number is set to 0.4. Two layers of ghost particles are modeled near 

the actual particle layer of solid boundaries. 

Particle configuration at different times is presented in Figure 15. As the box slides 

along the inclined wall, the water is heaved up and a wave is formed. At t=0.6s, water 

strikes the right inclined wall. The wave moves toward the left vertical wall and around 

t=1.5s, it reflects from the wall. The maximum height of the water at t=0.8s is about 107.2 

cm, which is the same as the value calculated by I-SPH simulation (Ataie-Ashtiani and 

Shobeyri 2008). The water elevation at t=1.5s adjacent to the left vertical wall is 107.6 cm, 

1 cm higher than the value predicted by I-SPH method (Ataie-Ashtiani and Shobeyri 2008). 

Figure 16 shows the computed velocity field at different times. As the box slides along 

the inclined wall, a vortex is gradually generated. At t=1s, the formation of the vortex 

above the box is clear. The intensity of velocity field is decreased once the box is stopped.  
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Figure 15 - Particle configuration at different times for submarine landslide simulation. 
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Particle configuration at different times for the submarine landslide simulation 

(continued).  

 

Figure 16- Velocity field at different times for the submarine landslide simulation.  
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Velocity field at different times for the submarine landslide simulation (continued). 

The pressure field at different times is presented in Figure 17. Up to t=0.5s, far from the 

box, the pressure distribution is nearly hydrostatic. As the wedge moves, it exerts dynamic 

pressure on the water body and as a result, the hydrostatic pressure distribution near the 

wedge is disturbed and the pressure is increased. 
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Figure 17- Pressure field at different times for the submarine landslide simulation. 
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Pressure field at different times for the submarine landslide simulation (continued). 

Figure 18 shows a comparison between the present MPS results and the experimental 

data (Heinrich 1992) for the water surface profile at t=0.5s and t=1s. The overall agreement 

is satisfactory and demonstrates the accuracy of the model. However, few discrepancies are 

observed above the box at t=1s. The same issue exists for the simulations performed by the 

VOF method (Heinrich 1992; Rzadkiewicz et al. 1997) and the I-SPH method (Ataie-

Ashtiani and Shobeyri 2008). As noted by Heinrich (1992), part of these differences is 

explained by the highly turbulent motion of fluid at this region. As no turbulence model is 

implemented in the code, the present MPS model cannot simulate the free surface 

turbulence. Additionally, above the box, the experimental wave elevation is recorded on the 

film with an error of some centimeters (Heinrich 1992). 
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Figure 18- Water surface profile comparison between the MPS results and the 

experimental data for the submarine landslide problem. 
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3.2.3. Results of the WC-MPS simulation 

As explained earlier in chapter 2, the WC-MPS method is a simplified form of the MPS 

method which allows a slight compressibility to the fluid. By considering a numerical 

sound speed in the fluid, an equation of state is introduced to explicitly calculate the 

pressure without dealing with the Poisson equation of pressure and large systems of 

equations to implicitly calculate the pressure. In this part, results for the simulation of water 

waves generated by rigid underwater landslide using the WC-MPS method are presented 

and compared with the results for the simulation of the same problem using the MPS 

method. 

Particle configuration at different times obtained by the WC-MPS simulation is 

presented in Figure 19. The overall shape of the water surface profile calculated by the 

MPS and WC-MPS models are almost the same. At t=0.5s, near the left vertical wall, a 

slight turbulence on free surface is visible in results of the WC-MPS simulation, which is 

not physically expected. . Table 3 shows information on water elevation at different times 

obtained by the MPS, WC-MPS and I-SPH (Ataie-Ashtiani and Shobeyri 2008) methods. 
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Figure 19- WC-MPS results for particle configuration at different times for the submarine 

landslide. 
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WC-MPS results for particle configuration at different times for the submarine landslide 

(continued). 

Table 3- Information on water surface elevation at different times obtained by MPS, WC-

MPS and I-SPH methods 

Method 

Maximum water elevation 

at t=0.8s (cm) 

Water elevation at t=1.5s adjacent to left 

vertical wall (cm) 

MPS 107.2 107.6 

WC-MPS 109.7 106.9 

I-SPH 107 106.6 

 

Figure 20 shows the pressure field at different times calculated by the WC-MPS model. 

At t=0.1s, far from the landslide mass, it is expected to have nearly hydrostatic pressure 

distribution. This is achieved by the MPS model, but the WC-MPS model shows relatively 

higher pressure at this region. A pressure drop is visible in the results of WC-MPS model 

as the time proceeds from 0.1s to 0.8s, which is unphysical. The MPS method suffers from 

unphysical pressure fluctuation, which results in irregularity of the pressure field. This 
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irregularity is obvious at t=0.8s and t=0.9s. The pressure fluctuation may result in high 

pressure gradient at some regions of flow. This will cause some particles to obtain high 

unphysical velocity which reduced the accuracy of simulation as well as decreasing the 

time steps due to CFL stability condition. This unphysical pressure fluctuation and the 

associated pressure field irregularity are relatively lower in the WC-MPS results. 

Figure 21 shows a comparison between the water surface profile calculated by MPS 

and WC-MPS models and the experimental data (Rzadkiewicz et al. 1997) at t=0.5s and 

t=1s. The overall agreement between the computational results and the experimental data is 

satisfactory and demonstrates the accuracy of the models. However, the MPS results are in 

closer agreement with experimental data than the WC-MPS results. The water surface 

elevation near the left vertical wall has an unphysical raise in the WC-MPS results due to 

the observed slight turbulence at this region.  

 

Figure 20- WC- MPS results for pressure field at different times for the submarine 

landslide. 
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WC- MPS results for pressure field at different times for the submarine landslide 

(continued). 
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Figure 21- A comparison for the water surface profile between the MPS, WC-MPS, and 

experimental results. 
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The average CPU time per time step for the MPS and WC-MPS models are 117.15s 

and 3.03s, respectively. The computer is equipped with Intel® Core™ i7-2600 CPU 3.40 

GHz and a system memory of 16.0 GB. In the present MPS model, a direct method of 

Gauss-elimination is used to solve the system of linear equations derived from Poisson 

equation of pressure, which is an expensive solver. Indeed, by implementing an iterative 

method such as conjugate gradient method in the code, the computational time will 

considerably decrease. There is no doubt that the most time consuming parts of the 

simulation is the solver of Poisson equation of pressure. As reported by Koshizuka et al. 

(1998), this part of simulation takes about 84% of the total CPU time, using the incomplete 

Cholesky decomposition conjugate gradient (ICCG) method to model the breaking waves 

on slopes represented by 2418 particles. 

The advantage of the WC-MPS method is that it does not deal with the solution of 

Poisson equation of pressure and accordingly, the CPU time per each time step will 

considerably reduce. However, to satisfy CFL stability condition for explicit schemes, 

usually smaller time steps should be used in the simulation, depending on the choice of 

numerical value for sound speed in reference fluid and the Courant number. Usually, the 

MPS model needs smaller Courant number than WC-MPS model to remain stable. In 

general, in most cases, especially when the total number of particles is high, the WC-MPS 

has better CPU time performance (Shakibaeinia 2011). 

3.3. Introduction to multiple-size particle technique 

In the mesh-free particle methods, such as the MPS method, in order to have a high 

order of accuracy, the size of particles should be sufficiently small. However, fine 
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resolution is not necessary on the whole computational domain as we are mainly interested 

in particle configuration at specific regions of the computational domain, such as free 

surface. Using very small particle sizes for representing the entire domain makes the 

simulations computationally expensive and even impractical.  

In this section, a number of fluid particles, initially located at a specific region of the 

computational domain are marked to further track their motion during the landslide. The 

dimensions of the marked region (white region in ) are 292cm×60cm. The particle size is 

set to 4 cm, and the domain is represented with 2109 fluid particles. The number of marked 

particles is 1095, 52% of the fluid particles. 

As shown in Figure 22, marked fluid particles (white particles) do not reach the free 

surface until t=3s. Therefore, by increasing the size of the fluid particles located at the 

initially marked region, we expect the free surface to be simulated with high resolution 

with no significant change in the shape of water surface profile.  

In chapter 5, a new multiple-size particle algorithm is introduced, which allows the use 

of different particle sizes within a computational domain. This will considerably increase 

the efficiency of mesh-free particle methods in modeling free surface problems in large 

scales by significantly decreasing the computational time. 
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Figure 22- Tracking the motion of the marked particles (white particles) in the 

computational domain.  
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Tracking the motion of the marked particles (white particles) in the computational 

domain (continued). 

3.4. Summary 

Modeling of water waves generated by landslides is of significant importance in flood 

hazard assessment of coastal areas. Due to the complex motion of the submerged bodies 

and the wave interaction with the shore line which results in non-linearity of governing 

equations, numerical methods are often used to model the landslide–generated water 
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waves. Grid-based methods have difficulties dealing with such flows due to the high 

deformation of the free surface.  Alternatively, mesh-free particle methods are often better 

suited to cope with the geometric changes of domain of interest. In this chapter, the MPS 

method, which is a mesh-free fully Lagrangian method, is used to model the water waves 

generated by vertical and submarine landslides. In both cases, a wave and a vortex are 

generated as a result of the landslide. The water surface profiles and velocity fields are 

presented at different times. Measurements of the wave characteristics are reported. By 

comparing the results with the available experimental data or analytical solutions, it is 

shown that the MPS method is capable of providing accurate prediction of the surface 

profile and amplitude of the landslide-generated water waves. 

In this study the kernel function suggested by Ataie-Ashtiani and Farhadi (2006), to 

improve the stability of the MPS method, is applied to simulate vertical and submarine 

landslides. Analyses demonstrate the good stability of MPS method using this kernel 

function. Unlike the SPH (Monaghan and Kos 2000) and I-SPH (Ataie-Ashtiani and 

Shobeyri 2008) vertical landslide simulation results, which are presented only up to 0.7s, 

the MPS method could stably simulate the problem until 17s and up to when the water 

surface profile has become approximately horizontal.  

Accurate prediction of water surface profile of vertical and submarine landslides using 

the MPS method demonstrates the utility of this method in simulating problems with 

irregular and complex free surfaces in hydraulic and coastal engineering, where accurate 

prediction of water surface profile and wave characteristics is of significant importance.
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Chapter 4 : Multiphase MPS Method for Granular Flows 

Free surface multiphase flows occur frequently in nature and in industry and are of 

significant practical and theoretical interests. Examples include sediment transport in rivers 

and estuaries, gravity currents, ocean-air coupling, and ship in stratified fluid flow. The 

unique challenges of free surface multiphase flow often make analytical solutions to the 

governing equations impossible and experimental investigations very difficult; therefore, 

numerical methods have gained a lot of interest in the area of scientific computation of free 

surface multiphase flows under very complicated conditions to disclose the detailed flow 

information. 

Multiphase flows have been the subject of a few studies conducted using the mesh-free 

Lagrangian methods. For instance, the SPH method was used to model interfacial flows 

(Colagrossi and Landrini 2003), gravity currents (Shao 2011; Monaghan 1999), and oil 

spills (Violeau et al. 2007). Hu and Adams (2007; 2009) used the projection I-SPH 

approach to model multiphase flows under a wide range of density ratios. Shakibaeinia and 

Jin (2012) developed a WC-MPS multiphase model in which the multiphase system is 

treated as a multi-density multi-viscosity fluid. 

In this chapter, an improved MPS method, named the multiphase MPS method, is 

proposed for incompressible flows. The multiphase system is treated as a multi-density 

multi viscosity fluid. A single set of governing equations is solved on the whole 

computational domain. A high-order accurate density smoothing scheme suggested by 

Khayyer and Gotoh (2013) is applied to the phase interfaces to avoid pressure 
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discontinuities. Similar to the approach of Shakibaeinia and Jin (2012), a viscosity 

arithmetic averaging formula is applied to smooth the shear stress discontinuities at the 

phase interfaces. An adaptive density algorithm is proposed and applied for modeling of 

rigid boundary particles. The cubic spline kernel function suggested by Ataie-Ashtiani and 

Farhadi (2006) is used to improve the stability of the simulations. The present algorithm 

can be applied to a wide range of multiphase flow simulations with relatively low density 

ratios. 

The proposed multiphase MPS method is then is then implemented to simulate 

deformable submarine landslide and dam-break over an erodible bed. The granular media 

is assumed to behave as a non-Newtonian fluid and the Bingham plastic model is utilized to 

deal with the rheology of the system. Similar to the water phase, the granular phase is also 

represented with particles with the same size as of the particles representing the water 

phase. Results are presented and compared with the available experimental data and with 

other numerical results to evaluate the accuracy of the simulations. 

4.1. Multiphase MPS Formulation 

In the present formulation for modeling of multiphase flows, only one set of governing 

equations is considered and solved on the whole computational domain. However, this will 

produce significant pressure and shear stress discontinuities across the phase interfaces. To 

avoid the pressure discontinuity, a simple spatial averaging formula may be used to 

calculate the density of a fluid particle adjacent to the phase interface, as follows 

1 ( )
( )i j i j

i j

w
w

ρ ρ= −
− ∑∑

ρρ
ρρ

 (4.1) 
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The above formulation is applied to a variety of SPH-based simulations, (e.g. Hu and 

Adams 2007; Shao 2012), and to the WC-MPS simulation conducted by Shakibaeinia and 

Jin (2012). Note that unlike the calculation of the particle number density (equation (2.3)), 

the reference fluid particle should take part in the weighted averaging for a more accurate 

approximation of the density of that particle. If so, those kernel functions which are 

singular at the reference fluid particles ( 0)r = cannot be implemented in this formulation, 

such as the delta kernel function proposed by Koshizuka et al. (1996).  

As reported by Khayyer and Gotoh (2013), equation (4.1) will result in numerical 

diffusion and accordingly, an unphysical density smoothing. Furthermore, application of 

this equation will lead to unphysical intrusions of the heavier phase into the lighter one 

(Colagrossi and Landrini 2003). Equation (4.1) corresponds to a zeroth-order accurate 

evaluation of the density without considering the spatial variations of density at a reference 

particle i . Using the Taylor series expansion, Khayyer and Gotoh (2013) provided a first-

order accurate calculation of the density across the phase interfaces, expressed as: 

1 ( )
( )

i i
i j ij ij i j

ij iji j

x y w
x yw
ρ ρρ ρ

 ∂ ∂
= − − −  ∂ ∂−  

∑∑
ρρ

ρρ
 (4.2) 

This equation is implemented in the present multiphase MPS formulation.  

Using the Laplacian model (equation (2.7)), the MPS approximation for the viscous 

term can be written as 

2
0

2 [ ( ) (| |)]ij j i j ii
i j

d w
n

υ φ υ φ φ
λ ≠

∇ = − −∑ r r  (4.3) 
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ijυ  is the interaction kinematic viscosity. Far from the phase interfaces, it is equal to 

kinematic viscosity of each particle. To avoid the shear stress discontinuity across the phase 

interfaces of unlike fluids, similar to the approach of Shakibaeinia (2011), a simple 

arithmetic average of the particle viscosities is used across the phase interfaces. This 

approach will turn the MPS approximation of viscos term to the following expression 

2
0 [( )( ) (| |)]i j j i j ii

i j

d w
n

υ φ υ υ φ φ
λ ≠

∇ = + − −∑ r r  (4.4)
 

Using the DPD (Dissipative Particle Dynamics) method, Visser et al. (2006) showed 

that this approach will provide good approximations for the value of the interaction 

kinematic viscosity. 

4.2. Granular Media Rheology 

The granular media is treated as a non-Newtonian fluid. Particles (which are called 

pseudo particles in this paper) are representing the grains and they are having the same size 

as of the particles representing the water phase. Thus, depending on the average size of 

grains, each pseudo particle is representing a number of grains. Figure 23 shows a 

schematic of this assumption. 
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Figure 23- A schematic of the pseudo particles carrying a number of attached grains. 

In Non-Newtonian fluids, viscosity is a function of the shear rate or shear rate history 

and unlike Newtonian fluid there is no linear relationship between shear stress and shear 

rate.  Molten polymers, toothpaste, many salt solutions, and starch suspensions are some 

examples of the non-Newtonian fluids. For these types of fluids, a variety of rheological 

models relating the shear rate to viscosity exists. The simplest and most common rheology 

model is the Bingham plastic model (Bingham 1922). Some SPH studies have 

implemented the Bingham model for granular flow simulation (e.g. Huang et al. 2012; 

Pastor et al. 2009; Laigle et al. 2007; Shao and Lo 2003). The Bingham plastic model is 

expressed as: 

B
B B

eff

B

τµ γ τ
γµ

γ τ

 + ≥= 
 ∞ <







 (4.5) 

effµ , Bµ , Bτ  and γ  are effective dynamic viscosity, Bingham plastic dynamic viscosity, 

Bingham yield stress and shear rate, respectively. The shear rate can be calculated as 
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2 22

2 2u v u v
x y y x

γ
   ∂ ∂ ∂ ∂ = + + +    ∂ ∂ ∂ ∂     

  (4.6) 

u  and v  are the horizontal and vertical components of the velocity vector, respectively. 

Within this model, no deformation will take place until a specified shear stress (which is 

the yield stress) is applied to the system. The Bingham plastic model is implemented in this 

study for modeling non- Newtonian granular media.  

4.3. Boundary Treatment 

To allocate a density value to solid boundary particles, an adaptive algorithm is used. 

At each time step, density of the solid boundary particles is dynamically adjusted to the 

local weighted average of the density of neighboring fluid particles. Hence, each solid 

boundary particle may obtain different density values during the simulation time. To apply 

the no-slip boundary condition, a frozen high value of viscosity is assigned to the particles 

which are modeling no-slip walls.  

4.4. Deformable Submarine Landslide 

Deformable underwater landslide has been the object of a few studies. Didenkulova et 

al. (2010) studied the tsunami wave generation by deformable submarine landslides of a 

variable volume in a basin of variable depth using the shallow-water theory. Jiang and 

LeBlond (1992) developed a numerical model based on finite-difference method to study 

the coupling of an underwater landslide and the resulting surface waves. Rzadkiewicz et al. 

(1997) assumed a two-phase flow of sediment motion and simulated the underwater 

landslides using the VOF method. Ataie-Ashtiani and Shobeyri (2008) developed an I-SPH 

model to simulate water waves generated by rigid and deformable landslide masses. 
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Capone et al. (2010) conducted the same study for the deformable underwater landslide 

using the SPH method. 

The experiment on the hydraulic effects of the submarine landslide carried out by 

Rzadkiewicz et al. (1997) is simulated herein using the multiphase MPS method. A 

rectangular cross sectional channel, 4m long, 0.3m wide and 2m high is used in the 

experiment. The channel consists of a left vertical and a right 45° inclined enclosing walls. 

A small tank is also connected to the right side of the main tank to model the shore line. 

The channel is filled with clean-water up to 1.6m. 

A mass of sand, having a triangular vertical cross-section is held at rest by a vertical 

guillotine water gate on the inclined wall and 10cm below the water surface. The vertical 

cross-sectional dimensions of the mass are 0.65m×0.65m. The width of the sand and the 

channel are the same. Therefore, the experiment can be considered 2D in a vertical plane. 

Figure 24 shows the experimental setup. The model consists of generating water waves by 

sudden removal of the gate and allowing the mass to slide along the inclined wall of the 

channel. The mass consists of coarse gravel, having a mean apparent density of             

1950 kg/m3. 
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Figure 24- Experimental setup for the deformable underwater landslide experiment 

performed by Rzadkiewics et al. (1997). 

In the present multiphase MPS model, initial particle spacing is 2.5cm, resulting a total 

number of 6789 particles (including water, sediment, wall, and ghost particles). The cubic 

spline kernel function which is suggested by Ataie-Ashtiani and Farhadi (2006) is used and 

the kernel size is set to twice the initial particle distance. The initial size of the time steps is 

set to 0.001s, controlled by the CFL stability condition (Courant et al. 1967). To satisfy the 

CFL stability condition, a Courant number of 0.4 is selected. The free surface parameter is 

set to 0.99. In addition to one layer of solid boundary particles, two layers of ghost particles 

are considered. The simulation is conducted for 1 second. It is assumed here that the gate is 

removed instantly. 

The clean-water is a Newtonian fluid and its dynamic viscosity is 1.002×10-3 Pa.s (at 

20℃). First, the landslide mass is considered as an ideal fluid, meaning that the viscosity 

term in the governing equations is neglected for both water and sand phases. Figure 25 

shows the corresponding particle configuration.  
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Figure 25- Particle configuration for the deformable submarine landslide at t=0.4s and 

0.8s. The landslide mass is considered as an ideal fluid. x to y ratio is 1.  

A comparison for the water surface profile at 0.4s and 0.8s is provided between the 

multiphase MPS results and experimental data in Figure 26. This comparison clearly shows 

that it is not accurate to assume the landslide mass as an ideal fluid, since the water surface 

profile predicted by the multiphase MPS method under this assumption does not match 

appropriately with the experimental data. 
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Figure 26- A comparison for the water surface profile at t=0.4s (top) and t=0.8s (bottom) 

between the MPS and experimental results. The mass is considered as an ideal fluid. x to 

y ratio is 0.2. 

Next, the landslide mass is assumed as a Non-Newtonian fluid. No measurement is 

performed on the rheological parameters in the experiment. Nevertheless, these parameters 

are obtained by trials and errors studies conducted by Rzadkiewicz et al. (1997). Following 

these studies, Bingham plastic dynamic viscosity and the sand yield stress are set to 0Pa.s 

and 1000Pa, respectively. Results for the particle configuration are presented in Figure 27.  
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Figure 27- Particle configuration for the deformable submarine landslide problem at 

different times. 
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Particle configuration for the deformable submarine landslide problem at different times 

(continued). 

Figure 28 shows the velocity field at 0.4s and 0.8s. As the landslide mass slides along 

the inclined wall, it generates a reverse plunging wave which creates a vortex. To show the 

accuracy of the model, a comparison for the water surface profile between the multiphase 

MPS results, the SPH results (Capone et al. 2010) and the experimental data (Rzadkiewicz 

et al. 1997) is provided in Figure 29. The good agreement between the multiphase MPS 

results and experimental data shows the applicability and accuracy of the present method to 

predict the water surface profile.  
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Figure 28- Velocity field for the deformable submarine landslide problem at t=0.4s and 

0.8s. The landslide mass is considered as a non-Newtonian fluid. x to y ratio is 1. 
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Figure 29- A comparison for the water surface profile at t=0.4s (top) and t=0.8s (bottom) 

between the MPS, SPH and experimental results. The mass is considered as a Non-

Newtonian fluid. x to y ratio is 0.2. 

Figure 30 shows a comparison for the landslide mass profile predicted by the MPS, 

SPH (Capone et al. 2010) and VOF (Rzadkiewicz et. al. 1997) methods. The agreement 

between the results is close and the small discrepancies are likely due to the difference in 

the boundary conditions and calculation parameters. There is no quantitative experimental 

result available for the landslide mass profile. 
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Figure 30- A comparison for the landslide mass profile at t=0.4s (top) and t=0.8s 

(bottom) between the MPS, SPH and VOF results. x to y ratio is 1.
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4.5. Dam-Break over an Erodible Bed 

The majority of the existing numerical models for the dam-break problem are 

applicable only for fixed beds. However, dam-break waves usually propagate along 

floodplains and rivers, in which the interaction between the dam-break flow and the bed 

sediments should be taken into account. The dam-break flow over the sediments is highly 

erosive, which results in a complicated interaction between the flood and the bed 

sediments. Therefore, implementing an efficient numerical method can improve our 

understanding of such flows. 

Spinewine (2005) conducted several experiments on the dam-break flow over 

sediments, exploring different bed configurations and sediment densities. Shakibaeinia and 

Jin (2011) performed numerical studies on the Spinewine’s experiments using the WC-

MPS method. Cao et al. (2004) built a theoretical model for predicting dam-break flows 

over mobile beds upon the conservative laws of shallow water hydrodynamics. Xia et al. 

(2010) developed a 2D morphodynamic model by modifying shallow water equations to 

consider the effect of sediment concentrations and bed evolution on the flood wave 

propagation, and by using an unstructured finite volume algorithm.  

An idealized dam-break laboratory experiment over loose granular beds conducted by 

Spinewine (2005) is simulated herein using the multiphase MPS method. A rectangular 

cross sectional flume, 6m long, 1.6m high and 0.10m wide, is used in the experiment. Fully 

saturated sediment of 10cm thickness is evenly distributed on the bottom of the flume. A 

narrow vertical gate separates the flume to two upstream and downstream sections with the 
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same length. The upstream section is filled by clear-water with density of 1000kg/m3. The 

depth of water above the flume bed sediment is 35cm. The dam-break wave formation is 

initiated by sudden removal of the separating gate. The geometrical domain for the 

experiment is sketched in Figure 31.  

 

Figure 31- Experimental setup for the mobile bed dam-break experiment performed by 

Spinewine and Zech (2005). 

Two distinct sediment materials were used in each set of experiment; coarse crushed 

sand and extruded PVC pellets. The coarse crushed sand sediment has the following 

properties: equivalent particle diameter of 1.82mm, a specific granular density of 

2683kg/m3, a bulk density of 1892kg/m3, a friction angle of 30° and negligible cohesion. 

The extruded PVC pellets sediment has the following properties: equivalent particle 

diameter of 3.92mm, a specific density of 1580kg/m3, a bulk density of 1336kg/m3, a 

friction angle of 38° and no cohesion. 

In the present multiphase MPS model, the simulation is performed with 7218 particles, 

which corresponds to an initial particle spacing of 1.67cm. The cubic spline kernel function 

suggested by Ataie-Ashtiani and Farhadi (2006) is used and the kernel size is set to twice 

the initial particle spacing. The initial size of the time steps is set to 0.001s, and a Courant 
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number of 0.4 is selected. The free surface parameter is set to 0.99. Two layers of ghost 

particles are considered in addition to the layer of solid boundary particles. The simulation 

is performed for 2 seconds. The removal speed of the separating gate is unknown in the 

experiment. Hence, it is assumed that the gate is removed instantly. 

The clean-water is a Newtonian fluid and its dynamic viscosity is 1.002×10-3 Pa.s (at 

20℃). The sediments are considered as a non-Newtonian fluid. The Bingham plastic model 

is used to calculate the viscosity of the sediment particles at each time step. No 

measurement of rheological parameters is performed in the experiment. Hence, the 

necessary rheological parameter, i.e. plastic dynamic viscosity, is calibrated based on the 

range offered by Chen and Ling (1996) and is set to 0.03 Pa.s for sand and to 0.02 Pa.s for 

PVC. The Mohr-Coulomb failure criterion is used for the calculation of the Bingham yield 

stress at each time step. 

Having PVC as the bed sediment, the particle configurations at different times are 

presented in Figure 32. As soon as the gate is removed, a wave is formed and starts to 

propagate toward downstream while washing the sediments. It is observed that the 

maximum sediment displacement occurs almost under the wave front. At late stages, as the 

water wave energy decreases, the shear stress on the sediments will also decrease, making 

them to deposit gradually. The pressure field and the velocity field at different times are 

plotted in Figure 33 and Figure 34, respectively. 
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Figure 32- Particle configuration for the mobile-bed dam break problem at different 

times. The sediment material is PVC. x to y ratio is 0.5. 
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Particle configuration for the mobile-bed dam break problem at different times. The 

sediment material is PVC. x to y ratio is 0.5 (Continued). 
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Figure 33- Pressure field for the mobile-bed dam break problem at different times. The 

sediment material is PVC. x to y ratio is 0.5. 



www.manaraa.com

78 

 

 

Figure 34- Velocity field for the mobile-bed dam break problem at different times. The 

sediment material is PVC. x to y ratio is 0.5. 
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Velocity field for the mobile-bed dam break problem at different times. The sediment 

material is PVC. x to y ratio is 0.5 (continued). 

Figure 35 shows a comparison between the present multiphase MPS results, 

experimental data (Spinewine 2005), and WC-MPS results (Shakibaeinia and Jin 2011) for 

the wave and sediment profiles. It is evident that the multiphase MPS results are predicting 

the water wave profile to a satisfactory extent. The position of the wave front at different 

times is almost the same in multiphase MPS and experimental results. The curvature of the 

water wave profile is predicted accurately by the multiphase MPS model. The multiphase 

MPS results do not perfectly match the experimental data for the sediment profile.  Several 

factors are likely to contribute to these observed discrepancies such as (a) The assumption 

of treating the sediments as non-Newtonian fluid may not be valid or may have some 

deficiencies in predicting the accurate displacement of the sediments; (b) A number of 

assumptions and simplifications are associated with the Mohr-Coulomb criterion; (c) The 

Bingham plastic model is a simple model which may have some deficiencies in accurate 

prediction of the flow viscosity; moreover, no measurement is performed on the rheological 
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parameters and the values are estimated and calibrated. Yet the multiphase MPS results are 

accurately predicting some important features of the sediment motion. The peak sediment 

displacement in experimental and multiphase MPS results is almost the same at different 

times. The local peaks in sediment profile are almost accurately captured by the multiphase 

MPS model. The general fluctuation trend of the sediment profile at different times is 

predicted accurately by the multiphase MPS model. 

Moreover, Figure 35 shows that the multiphase MPS performance surpass the WC-

MPS simulations of the same problem. The WC-MPS model does not detect the accurate 

position of the wave front and the wave curvature. Results of the WC-MPS model show 

overestimation of the water wave height at the regions close to the wave front. This 

overestimation is not seen in the multiphase MPS results. Overall, the WC-MPS results are 

showing more bed erosion than the multiphase MPS and experimental results do. For 

instance, the WC-MPS overestimates the peak displacement of the sediments, especially at 

t=0.25s and t=0.5s. There are unphysical drops in sediment height in the WC-MPS results 

in range of 10 60cm x cm≤ ≤ at t=0.5s and t=0.75s. Despite the multiphase MPS, the WC-

MPS does not predict the local sediment profile peaks accurately. In general, the water 

wave profile and the sediment profile at different times predicted by the multiphase MPS 

model are in much better agreement with the experimental data than the WC-MPS results 

are. It should be noted that in the WC-MPS model, a general visco-plastic fluid model is 

used for the rheology of sediments, which is a more advanced model compared to the 

Bingham plastic model and is expected to perform better.  
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Figure 35- A comparison between the experimental data, MPS results, and the WC-MPS 

results for the water surface and sediment profiles at 0.25s (top), 0.50s (middle), and 

0.75s (bottom). The sediment material is PVC. x to y ratio is 0.3. 
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Figure 36 shows the particle configuration at different times for the case of having sand 

as the bed sediment. The simulation is performed for 1 second. Compared to the PVC case, 

the bed erosion and displacement is less as the density of the sand is higher than the PVC 

and requires relatively more dynamic pressure for being displaced. Figure 37 represents a 

comparison between the multiphase MPS results, the WC-MPS results, and the 

experimental data for the sand profile and another comparison between the multiphase 

MPS results and the experimental data for the water wave profile. There is no quantified 

WC-MPS result available for the water wave profile in this case. The general discussion for 

the PVC case is also applicable here and is avoided to be elaborated again for the sake of 

briefness. The agreement between the multiphase MPS and experimental results for water 

wave profile is close. At t=0.25s, the wave front is predicted accurately by the multiphase 

MPS model. However, at t=0.5s and t=0.75s, the wave front is overestimated and the errors 

of the overestimations are 7.79% and 4.05%, respectively, compared to the experimental 

data. The water wave profile curvature in multiphase MPS results are the same as in the 

experimental results. Compared to the WC-MPS, results of the multiphase MPS model are 

in closer agreement with the experimental results for the peak sediment displacement. The 

local peaks in sediment profiles are also in better agreement with the experimental results 

in the multiphase MPS simulation, compared to the WC-MPS model. At t=0.5s, there is 

likely a lag time in the sediment peak displacement between the multiphase MPS and 

experimental results, meaning that the two peaks are happening at different positions.  In 

comparison with the WC-MPS results, it is obvious that the WC-MPS simulation is 

showing very high and unphysical erosion and respectively high sediment deformation and 
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that the multiphase MPS simulation results surpass the WC-MPS simulation of the same 

problem. 

 

Figure 36- Particle configuration for the mobile-bed dam break problem at different 

times. The sediment material is sand. x to y ratio is 0.5. 
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Figure 37- A comparison between the experimental data, MPS results, and the WC-MPS 

results for the water surface and sediment profiles at 0.25s (top), 0.50s (middle), and 

0.75s (bottom). The sediment material is sand. x to y ratio is 0.3. 
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4.6. Summary 

In this chapter, a multiphase mesh-free particle method is proposed based on the MPS 

formulation. The proposed multiphase MPS method treats the multiphase system as a 

multi-density multi viscosity fluid and solves one single set of governing equations on the 

whole computational domain. The pressure and shear stress discontinuities along the phase 

interfaces are smoothed by applying density and viscosity averaging algorithms. The 

granular media is represented by particles which have the same size as of the fluid particles 

and their behavior is assumed to be similar to non-Newtonian fluids. The Bingham plastic 

model is applied as the rheology model to calculate the viscosity of the granular phase at 

each time step. 

The proposed method is then utilized in simulation of granular flow and sediment 

transport. Two problems, deformable submarine landslide and dam-break over an erodible 

bed, are simulated and the results are presented and discussed in detail. 

Comparing the experimental results for the underwater landslide problem with the 

results of the present multiphase MPS model clearly shows that the multiphase MPS model 

can accurately predict different features of the flow and the water surface profile is in good 

agreement with the experimental data. The simulated landslide mass profile is also 

comparable with the results of other numerical methods and despite few discrepancies 

which are likely caused by the assumptions associated with the applied rheology model and 

rheological parameters and the boundary conditions, the results are in good agreement with 

each other.  
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The dam break over an erodible bed is modeled in two cases with different bed 

materials; PVC and sand. The particle configuration at different times is presented. The 

results for the water wave and sediment profiles are compared with the experimental data 

and the WC-MPS results. The general conclusion is that the present multiphase MPS model 

can satisfactorily predict the water wave profile. Also, despite few discrepancies between 

the experimental data and the multiphase MPS results for sediment profiles, the multiphase 

MPS model is successfully predicting some important features of the sediment flow. In 

addition, the results of the present multiphase MPS model are significantly in closer 

agreement with the experimental data than the WC-MPS results. This makes a significant 

enhancement in the application of this mesh-free particle method in simulating free surface 

multiphase flow systems.  

Successful prediction of the free surface and sediment flow through the proposed 

multiphase MPS method, straightforward boundary and interphase treatment, ease of 

coding, and good stability of this method are factors suggesting the idealness of this 

technique for simulating complex free surface multiphase problems.  This method can be 

used to simulate free surface and multiphase problems in hydraulics, river, coastal and 

ocean engineering where an accurate prediction of water surface profile is necessary.
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Chapter 5 : Multiple-Size Particle Algorithm for Mesh-Free Methods 

5.1. Problem Definition 

In a typical numerical analysis of fluid flow by mesh-free methods, the number 

(distance) of particles representing the fluid is of importance. Decreasing the number of 

particles in favor of reducing the computational cost may adversely affect the accuracy of 

the simulations, while to keep the use of resources at an optimum level, the number of 

particles should not be unreasonably large. 

It is well known that the complexity of free surface flows differ significantly depending 

on the flow region. Specifically, flow in regions close to free surface is usually much more 

complex than the flow deep below the surface. As shown in chapter 3 for simulation of 

landslide-induced water waves, it is not necessary to have fine distribution of particles 

everywhere in the computational domain. Alternatively, to increase the efficiency of the 

simulations while keeping the accuracy at a desired level, one can implement particles with 

different initial distances (or say particles with different sizes) to represent the fluid and 

boundaries. Those parts of the fluids that are associated with relatively less complexity may 

be represented by particles with large initial distances. On the other hand, particles that 

have a leading role in determination of important features of the flow such as free surface 

should have relatively smaller initial particle spacing in order to provide the desired 

accuracy. 
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Beside the efficiency of the multiple-resolution representation of fluid flow, there is 

sometimes a big need in CFD codes to be capable of representing the boundaries or 

external objects in a different resolution compared to the fluid flow resolution; for instance, 

in simulation of fluid-structure interaction, flow in vegetated channels, or flow on an airfoil 

(see Larroude and Oudart (2012)). There are sometimes restrictions in the thickness of the 

boundaries or external objects. Those codes that are not capable of dealing with multiple-

resolution representation of computational domain have to simulate the whole domain in a 

relatively high resolution arising from the restrictions, making the computational time often 

dramatically large. The computational resources might not be available or affordable for 

simulation of problems in such high resolutions. By utilizing a multiple-resolution 

algorithm, the restrictions on the size of the objects or boundaries could be satisfied while 

the fluid flow is simulated in a desired resolution depending on the availability of 

computational resources and desired level of accuracy. 

In this chapter, a new algorithm for the usage of particles with different sizes in one 

computational domain is proposed for mesh-free particle methods. The algorithm is applied 

to the WC-MPS method and results for simulations of dam-break and landslide-induced 

water waves are presented. It is preferred to apply the algorithm to the WC-MPS method 

rather than to the MPS method for the sake of simplicity to avoid unnecessary difficulties 

dealing with Poisson equation of pressure. Again for the sake of simplicity, the third-order 

spiky kernel function proposed by Shakibaeinia and Jin (2010) is utilized herein. The 

proposed multiple-size particle method applied to the WC-MPS formulation is abbreviated 

to MS-WC-MPS herein in this chapter. 
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5.2. Mechanism of fine-region coarse-region interaction  

For a better presentation of the multiple-size particle algorithm, the case of having just 

two resolutions in one computational domain is discussed herein; a coarse region and a fine 

region. The same algorithm can be easily utilized and applied for simulation of fluid flow 

represented with more than two scales.  

Particles representing the coarse and fine regions are called “large” and “small” 

particles and are labeled as “Ll” and “Ls” particles, respectively. The initial particle spacing 

between Ll particles is 0nl , and between Ls particles is 0l . The initial particle spacing 

between an Ll and an Ls particle would be ( ) 01 / 2n l+ × . Figure 38 shows a schematic of 

the corresponding particle configuration. In this configuration, the value of parameter n is 

set to 2, meaning that each Ll particle is occupying the space of four Ls particles. 

 

Figure 38- Schematic of a sample two-scale computational domain. 

  Assume the kernel size for particles representing the fine region is set to 0lα . For 

calculation of kernel function, consider four distinct scenarios: 

• Scenario 1: when a reference Ll particle interacts with another particle of the 

same type ( Ll Ll→ ). The kernel size in this scenario is 0nlα . 
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• Scenario 2: when a reference Ls particle interacts with another particle of the 

same type ( Ls Ls→ ). The kernel size in this scenario is 0lα . 

• Scenario 3: when a reference Ls particle interacts with a Ll particle ( Ls Ll→ ). 

We do not define any kernel size in this scenario. 

• Scenario 4: when a reference Ll particle interacts with a Ls particle ( Ll Ls→ ). 

We do not define any kernel size in this scenario. 

The calculation of kernel function in scenarios 1 and 2 is pretty straightforward as the 

kernel size is specified. The difficulties will be raised in calculation of kernel function in 

either scenario 3 or 4, in absence of a specified kernel size. 

 

Figure 39- Definition of the four distinct scenarios of particle interaction. 
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The key point in the present multiple-size particle algorithm is large particle splitting, 

meaning that whenever a small particle is in interaction with a large particle, the large 

particle will be split to so-called fictitious particles. Therefore, an interaction between a Ll 

and a Ls particle is considered “possible” when the Ls particle can interact with at least one 

fictitious Ls particles. Assume dx and dy are respectively horizontal and vertical distances 

between a Ll and a Ls particle in a time step. For a case that n is equal to 2, we can write 

1/2
2 20 0if ( ) ( ) interaction

2 2
then

e
l ldx dy r + + + ≤ →    

1/2
2 20 0if ( ) ( ) interaction

2 2
then

e
l ldx dy r + + − ≤ →    

1/2
2 20 0if ( ) ( ) interaction

2 2
then

e
l ldx dy r − + + ≤ →    

1/2
2 20 0if ( ) ( ) interaction

2 2
then

e
l ldx dy r − + − ≤ →    

In scenario 3, when a reference Ls particle interacts with a neighboring Ll particle, the 

neighboring Ll particle will be split into fictitious particles of the same size as of the Ls 

particles. Therefore, the kernel function in this scenario is calculated as 

 
2

1
( ) ( )

n

ni
i

w Ls Ll w Ls Lf
=

→ = →∑   (5.1) 
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Lfn is a label for fictitious small particles corresponded to a neighboring particle, and n2 is 

the number of fictitious small particles when a large particle is being split. 

Scenario 4 is a little more complicated. Two cases are considered in this scenario. The 

first case happens when a large particle interacts with only small particles in one time step. 

The kernel function in this case is calculated as the arithmetic average of the interaction 

between each fictitious small particle and the neighboring small particle, written as 

2

1
2

( )
( )

n

ri
i

w Lf Ls
w Ll Ls

n
=

→
→ =

∑
 (5.2) 

Lfr is a label for fictitious small particles corresponded to a reference particle.  

In this scenario, the second case happens if the reference large particles interact with 

both small and large neighboring particles in one time step. In this case, the two large 

particles do not interact according to the first scenario. Instead, both will be split to 

fictitious small particles and the kernel function ( w′  ) for interaction of two large particles 

in this case is calculated as 

2 2

1 1
2

( )
( )

n n

rj ni
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→
′ → =

∑∑
 (5.3) 
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Figure 40- The particle interaction mechanism in each of the four scenarios. 

5.3. Calculation of the particle number density 

If a reference Ls particle interacts with both neighboring Ls and Ll particles in one time 

step, particle number density for the particle p,
p

n ,is written as 

( ) ( )p q p sp
q p s p

n w Ls Ls w Ls Ll
≠ ≠

= → + →∑ ∑  (5.4) 
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If the reference Ls particle interacts with only either Ls or Ll particles in one time step, the 

first or second term in right hand side of the above equation will vanish, respectively. 

If a reference Ll particle interacts only with neighboring Ll particles in a time step, the 

particle number density for the particle p is equal to 

( )p qp
q p

n w Ll Ll
≠

= →∑   (5.5) 

If a reference Ll particle interacts with both neighboring Ll and Ls particles in a time 

step, the particle number density for the particle p is calculated as 

( ) ( ) (inner particle)p q p sp
q p s p

n w Ll Ls w Ll Ll w
≠ ≠

′= → + → +∑ ∑   (5.6) 

The term w(inner particle) is considering the interaction between the fictitious small 

particles corresponding to one large particle (see Figure 41): 

[ ] [ ]{ }
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n
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w Lf Lf
w I k j k j n

n
= ∈

→
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∑∑

   (5.7) 

 

Figure 41- Calculation of the kernel function for inner particle interaction. 
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Calculation of the pressure gradient term in the MPS formulation is very similar to the 

calculation of the particle number density discussed herein. The pressure of the large 

particle will be assigned to the corresponding fictitious small particles. 

Note that the fictitious particles do not carry any physical variables. Instead, the 

corresponding Ls particles will carry the physical variables. The size of the time steps are 

calculated using the CFL stability condition for the small particles. In this algorithm, the 

constant particle number density ( 0n ) remains the same in both fine and coarse regions. 

Similar to the most of the common kernel functions in particle methods, the third-order 

spiky kernel function used herein in simulations of this chapter is a sole function of the 

ratio of initial particle spacing to kernel size. In both coarse and fine regions, as this ratio is 

kept the same in this algorithm, the constant particle number density will be the same in all 

regions. 

 



www.manaraa.com

 

96 

 

5.4. Dam-break induced water waves 

Dam-break-induced flows are among the important problems in civil engineering and 

their prediction is now a required element in design of a dam and analysis of dam 

downstream. The idealized 2D problem of the instantaneous removal of a barrier holding a 

water column at rest in a water tank with fixed beds is known as the “dam-break” problem. 

This problem has been widely used as a verification problem of the codes for the free 

surface flows and it is considered a bench-mark problem. 

In this part, the experimental results for dam-break-induced water waves (Martin and 

Moyce1952; Koshizuka and Oka 1996) are reproduced numerically using the WC-MPS 

method. Then, to verify the accuracy and efficiency of the proposed multiple-size particle 

method, results of the MS-WC-MPS simulation are compared with the experimental data 

and the WC-MPS results. Figure 42 shows the experimental setup. 

In the present WC-MPS simulation, the initial distance between two adjacent particles 

is 0.1825 cm, corresponding to 14734 particles including fluid, wall and ghost particles. 

Free surface parameter and kernel size are set to 0.99 and 0.365cm, respectively. The fluid 

is considered non-viscid. The Courant number is set to 0.5. Two layers of ghost particles 

are modeled adjacent to actual particle layer of solid boundaries. It is assumed that the 

barrier holding the water column at rest is removed instantly. Figure 43 shows the particle 

configuration at different times computed using the WC-MPS method. 
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Figure 42- Geometry of the dam-break experiment. 

In simulation of the similar dam-break problem using the proposed multiple-size 

particle method (MS-WC-MPS method), calculation parameters are kept similar to those of 

the WC-MPS simulation. The only difference in model configuration between the two 

simulations is that in the MS-WC-MPS simulation, part of the computational region is 

represented with relatively larger particles and the initial distance between two adjacent 

large particles is 0.365cm (n=2), reducing the total number of particles to 8975 particles. 

Figure 44 shows the configuration of the coarse and fine regions in the computational 

domain. A rectangular region relatively far from the free surface is selected to be 

represented in coarse resolution as the fluid in this region is expected to have less complex 

behavior compared to the near free surface region. Figure 45 shows the particle 

configuration at different times calculated by the MS-WC-MPS method. 
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Figure 43- Particle configuration for dam-break problem computed by the WC-MPS 

method. 
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Particle configuration for dam-break problem computed by the WC-MPS method 

(continued). 
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Figure 44- configuration of the coarse and fine regions in computational domain of the 

dam-break problem. 

Figure 46 shows a comparison between the experimental, MPS, WC-MPS, and MS-

WC-MPS results for the position of dam-break wave front at different times. At early 

times, numerical results are in good agreement with the experimental results. At relatively 

later times, small discrepancies are observed between the experimental data and numerical 

results. It is evident that the experimental results show relatively lower wave front speed 

than the numerical results, which is due to the friction between the fluid and the tank 

boundary in the experiment. Results of the MPS and WC-MPS simulations are in good 

agreement with each other and few discrepancies is results can be due to the use of 

different  boundary conditions and calculation parameters. Results of the MS-WC-MPS 

and WC-MPS simulations are in great agreement with each other, showing the accuracy of 

the proposed multiple-size particle method. 
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Figure 45- Particle configuration for dam-break problem computed by the proposed   

MS-WC-MPS method. 
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Particle configuration for dam-break problem computed by the proposed MS-WC-MPS 

method (continued). 
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Figure 46- Comparison for the dam-break wave front position between the experimental, 

MPS, WC-MPS, and MS-WC-MPS results. 

The total computational time for the WC-MPS simulation is 373.8 minutes, while it is 

321.0 minutes (14.13% less) for the MS-WC-MPS simulation. The computer is equipped 

with Intel® Core™ i7-2600 CPU 3.40 GHz and a system memory of 16.0 GB. Although 

the calculation of the interactions between large and small particles at the spatial resolution 

interfaces will add up some time to the total computational time of the multiple-resolution 

simulations, the total computational time compared to the similar simulations performed by 
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single-resolution models is decreased due to the savings in the computer memory and the 

amount of computation process.  

The difference between the total computational time of the WC-MPS and the MS-WC-

MPS simulations might not be very significant in the present simulations; however, the 

computational time savings of this multiple-size particle method will be bolded once the 

dam-break problem (or any other problem of interest) is simulated either in higher 

resolution, or in larger scales. This means that by utilizing larger number of particles in 

simulation of a problem, the difference between the total number of particles in single-

resolution and multiple-resolution simulations will increase, meaning more savings in the 

total computational time.  

Moreover, the present multiple-size particle algorithm will indeed perform better in 

terms of efficiency if applied to semi-implicit or fully-implicit schemes, as the size of the 

arrays (or identically the number of particle) in these schemes play a relatively more 

significant role in total computational time due to higher computational time sensitivity of 

these schemes to the size of arrays. This higher computational time sensitivity is because of 

the solution process of the system of linear equations (Poisson-type equations). 

5.5. Landslide-induced water waves 

The results reported earlier in chapter 3 for the water waves generated by rigid 

underwater landslide are reproduced herein using the present multiple-size particle 

algorithm. In chapter 3, a number of particles initially located at a specific region of the 

computational domain are marked and their motion is tracked throughout the landslide and 

associated water wave propagation. It is shown that the marked particles do not reach the 
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free surface during the simulation time (2.5sec). In this part, the same region marked in 

chapter 3 is represented with large particles, and the rest of the computational domain is 

represented with small particles, having the same size as of those used for the simulations 

of chapter 3. The proposed MS-WC-MPS method is used herein. The simulation is 

performed with 4242 particles, which corresponds to an initial particle spacing of 2.5cm for 

fine region and 5 cm for coarse region. The fluid is considered non-viscid. A Courant 

number of 0.5 is selected. A value of 1800 cm/s is selected for the numerical sound speed. 

The free surface parameter is set to 0.99. Two layers of ghost particles are considered in 

addition to the layer of solid boundary particles. The simulation is performed for 2.5 

seconds. Figure 47 shows the corresponding particle configuration at different times. 

The computational time for the simulation performed in chapter 3 using the WC-MPS 

method is 176.97 minutes, while the computational time of the present simulation using the 

MS-WC-MPS method is 150.33 minutes (15.05% less). Figure 48 shows a comparison for 

the water surface profile between the present MS-WC-MPS method, WC-MPS method, 

and the experimental results. It is evident that the discrepancies between the MS-WC-MPS 

and the WC-MPS results are minor and probably negligible. Therefore, by keeping the 

accuracy at the same level, the computational time is decreased. 
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Figure 47- Particle configuration at different times for the submarine landslide problem 

using the multiple-size particle algorithm. 
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Particle configuration at different times for the submarine landslide problem using the 

multiple-size particle algorithm (continued). 
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Figure 48- A comparison for the water surface profile between the MS-WC-MPS, WC-

MPS, and experimental results. 
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5.6. Summary 

In this chapter, a new multiple-size particle algorithm is introduced. This algorithm 

enables the multi-resolution simulation in one computational domain to save computer time 

and memory. Those parts of the fluid flow and boundaries associated with relatively high 

complexity can be simulated in high resolution, while the simulation of less complex 

regions may be performed in relatively lower resolution to reduce the overall 

computational time. 

The general idea behind the present algorithm is particle splitting; whenever a small 

particle is in interaction with a large particle, the large particle with be split to a number of 

so-called fictitious particles, and then the interaction occur between the reference small 

particle and target fictitious small particles. The fictitious particles do not carry any 

physical variables; the position of these particles can be calculated based on the position of 

the corresponding large particle, and the velocity, density, and pressure of the factious 

particles may be set to those of the corresponding large particle. Therefore, there will be 

significant savings in computer memory and CPU time by reducing the size of arrays. 

The proposed algorithm is then applied to a bench-mark problem for model 

verification. Results for the simulation of the dam-break-induced water waves are shown 

using the proposed algorithm and then compared with the available experimental data and 

with the results of other mesh-free methods using single-size particle representation of 

domain. Results for the landslide-induced water waves are also reproduced in this chapter 

using the proposed algorithm and compared with the available experimental data and 

single-size numerical simulation of this phenomenon. The general conclusion is that using 
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the present algorithm, the overall computational time is reduced while the accuracy of free 

surface profile prediction is kept almost at the same level. 

The present algorithm will indeed make a great contribution in significant reduction of 

computational time in large scale simulations when a considerable portion of the 

computational domain can be represented in relatively low resolution. Although the present 

multiple-size particle algorithm is applied to the WC-MPS method, it can be easily 

modified and applied to similar mesh-free particle methods such as the SPH method.  
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Chapter 6 : Conclusion and Recommendation 

This research introduces some improvements to a mesh-free particle method (MPS 

method) for efficient and stable simulations of free surface and multiphase flows. The MPS 

method is a fully Lagrangian method which provides approximations to the strong form of 

partial differential equations on the basis of integral interpolants. In this method, the 

governing equations for incompressible viscous flows (Navier-Stokes equations) are solved 

in a fully Lagrangian form using a fractional step method which consists of splitting each 

time step in two steps. The fluid is represented with particles. The motion of each particle is 

calculated through interactions with neighboring particles by means of a kernel function. 

The suggested improvements are focused on the stability, applicability, and efficiency 

of this method. The stability of the simulations is improved by the use of a newly-

introduced kernel function. The applicability of this method is extended by introducing a 

new model for simulation of multiphase flows, granular flows, and sediment transport. The 

efficiency of this method is improved by introducing a new multiple-size particle algorithm 

which allows the use of particles with different sizes to represent one computational 

domain. Each one of the improvements is verified in terms of accuracy and stability by 

successful simulation of a number of sample free surface problems. 

6.1. Major contributions 

In general, the contributions of this research can be categorized into three distinct parts: 
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1. Application of the MPS method is shown through the successful simulation of 

two sample complex free surface flows; the generation of water waves by 

rockslide and underwater landslide. Compared to the similar former studies 

focused on the application of this method, this research implements a newly-

introduced kernel function. It is shown that by utilizing this new kernel function 

the stability of the simulations is significantly enhanced. 

2. A multiphase MPS method is proposed for incompressible flows. The 

multiphase system is treated as a multi-density multi-viscosity fluid. A single 

set of governing equations is solved on the whole computational domain, and 

high-order accurate density and viscosity schemes are applied to stabilize the 

fluid pressure and shear stress fields. The proposed method is utilized for 

modeling of granular flows and sediment transport. The numerical results are 

verified with the available experimental results for the landslide-induced water 

waves and sediment transport via dam-break.  

3. A new algorithm is introduced to enhance the efficiency of the mesh-free 

particle methods. This algorithm enables the implementation of a set of particles 

with different sizes in one computational domain. This algorithm is applied to a 

simplified explicit form of the MPS method, and it is verified by accurate and 

efficient modeling of dam-break-induced water waves and landslide-induced 

water waves. 

This research aims to contribute to enhancement of the stability, applicability, and 

efficiency of the mesh-free particle methods. Although the present studies are focused on 

the MPS method, the proposed improvements are easily applicable to other mesh-free 
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particle methods. Having the proposed improvements applied to the MPS method makes it 

a very useful utility for solving problems in hydraulic, hydrodynamic, coastal, ocean, and 

river engineering that an accurate prediction of free water surface is required. 

6.2. Recommendations for future work 

Recommendations for future work in this area are presented in three categories; 

efficiency, accuracy and stability, and applicability: 

6.2.1. Efficiency 

1. Adaptive Particle Refinement: The multiple-size particle algorithm proposed 

in chapter 5 can be easily extended for adaptive refinement of particles. 

Considering two criteria, closeness to free surface and the Reynolds number, 

each big particle may dynamically be split to small particles and likely, a set of 

small particles may turn to a big particle. This technique will increase the 

efficiency of simulations even more. 

2. Multiple-Size Particles Multiple Time-Scale Simulation: The approach used 

in this research (chapter 5) in coupling sub-domains is to use the integration 

method (explicit or implicit) with the same time-step over the entire 

computational domain. However, this approach restricts the simulation to use a 

single time-step that meets the stability and accuracy criteria for the entire 

computational domain. In case of large scale problems this is not desirable as 

different regions can very well represent significantly different stability and 

accuracy requirements. Therefore, in order to increase the efficiency of the 

simulations, it is recommended to use different time-stepping algorithms in 
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different regions of the flow represented with different resolutions. The 

integration algorithm on the computational domain can be performed in a 

procedure in which coarse regions are advanced in time, while fine regions are 

advanced multiple steps to reach the same time as the coarse grids and the data 

at different levels are then synchronized. For more information, readers are 

referred to Almgren et al. (1998) and Ruparel et al. (2012), which have applied 

this approach to grid-based methods and have shown applications in fluid and 

structural dynamics.  

3. Concurrent Simulation: The MPS method has the capability to be broken into 

discrete parts that can be solved concurrently. Most significantly, the solution to 

large sparse matrix equations (Poisson-type equations) in the MPS formulation 

is the most time-consuming part of the simulation (as aforementioned in chapter 

3). Therefore, by using a parallel iterative solver, the computational time for 

MPS simulations will indeed dramatically decrease. Moreover, by applying the 

multiple-size particles multiple time-scale approach, the time advancement of 

each of the flow regions can be calculated in parallel which indeed will have a 

great contribution in reducing the overall computational time.  

6.2.2. Accuracy and Stability 

4. Pressure Field Instabilities: As shown earlier in chapter 3, the MPS method is 

still suffering from high pressure fluctuations in a fixed arbitrary point in the 

computational domain, and from high pressure irregularities in the flow 

pressure field. In the past few years, researchers have proposed a number of 
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modifications to the MPS formulation to solve the pressure field instabilities.  

Not all these modifications have yield successful simulation results. For 

example, Khayyer and Gotoh (2009) proposed a modified formulation for the 

calculation of pressure gradient for exact conservation of linear momentum. 

However, as shown by Shakibaeinia (2011), although this modified pressure 

gradient formulation will result is relatively accurate calculation of pressure 

field, it may not yield exact calculation of the pressure gradient between two 

particles, which is necessary for the accurate estimation of instantaneous motion 

of the fluid particles. Further studies are recommended to overcome the 

pressure field instability issue. 

5. Discretization Schemes: The order of accuracy of the MPS method increases 

by including more terms in the Taylor series expression. There are different 

methods for providing more accuracy by including more terms in the 

expansion; for instance, the Runge-Kutta (RK) methods (e.g. Moin 2010). The 

additional function evaluations will indeed results in higher computational time; 

but the accuracy will increase, and as it turns out, better stability properties will 

be also obtained. It is recommended to use more advance discretization 

schemes in the MPS method with higher order of accuracy compared to the 

original MPS scheme. The use of high order accurate schemes will also make 

the pressure calculations more stable. 
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6.2.3. Applicability 

6. Fluid-Structure Interaction: The grid-based methods have difficulties in 

analyzing the moving interfaces in fluid-structure interaction problems when 

the displacement of the interfaces is large, as the mesh will be distorted near the 

interfaces. Moreover, grid generation for complex geometries in grid-based 

methods may require very large computational time, often more time than the 

fluid and structure analysis. Mesh-free methods are free from difficulties arising 

from moving boundaries and interfaces, and complex grid generation process is 

much easier in mesh-free methods. The MPS method can be utilized to analyze 

complex fluid-structure interaction problems. Although this method is 

originally proposed for modeling of free surface incompressible flows, but it is 

possible to solve the governing equations of the structures using the approach of 

the MPS.  Using the multiple-size particle formulation presented in this research 

(chapter 5), one can easily model the fluids and structures in different 

resolutions, depending on the desired accuracy. In simulation of fluid-structure 

interaction problems using the MPS, it is important to ensure the pressure field 

is calculated correctly in order to calculate accurate forces exerted to the 

structures by the fluids. This shows the need to apply more improvements to the 

MPS method to have accurate calculation of the flow pressure field. 

7. Flow in Vegetated Channels: There is no trivial expression for the 

quantification of wave energy dissipation over plants. Numerical modeling of 

wave-vegetation interaction is tricky since the movement of the vegetation 

under waves and the stiffness parameters are difficult to define within a 
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mathematical model. It can be assumed in some cases that plants will behave as 

an elastic or visco-plastic structure (e.g. Larroude and Oudart 2012). By 

developing a model for fluid-structure interaction based on the MPS 

formulation, it is possible to deal with the flow in vegetated channel problems. 

Using the approach presented in chapter 5 for multiple-size particle 

representation of the computational domain, one can represent the thin plants 

with small particles while representing the fluid with relatively larger particles 

to keep the efficiency of the simulations at an acceptable level. 



www.manaraa.com

118 

 

References 

Almgren, A. S., Bell, J. B., Colella, P., Howell, L. H., and Welcome, M. L. (1998). “A 

conservative adaptive projection method for the variable density incompressible 

Navier–Stokes equations.” Journal of computational Physics, 142(1), 1-46.  

Arefmanesh, A., Najafi, M., and Abdi, H. (2005). “A meshless local Petrov-Galerkin 

method for fluid dynamics and heat transfer applications.” Journal of fluids 

Engineering, 127(4), 647-655. 

Ataie-Ashtiani, B., and Farhadi, L. (2006). “A stable moving-particle semi-implicit method 

for free surface flows.” Fluid Dynamics Research, 38(4), 241-256. 

Ataie-Ashtiani, B., and Najafi-Jilani, A. (2006). “Prediction of submerged landslide 

generated waves in dam reservoirs: an applied approach.” Dam Engineering, 17(3), 

135-155. 

Ataie‐Ashtiani, B., and Najafi Jilani, A. (2007). “A higher‐order Boussinesq‐type model 

with moving bottom boundary: Applications to submarine landslide tsunami waves.” 

International journal for numerical methods in fluids, 53(6), 1019-1048. 

Ataie‐Ashtiani, B., and Shobeyri, G. (2008). “Numerical simulation of landslide impulsive 

waves by incompressible smoothed particle hydrodynamics.” International Journal for 

numerical methods in fluids, 56(2), 209-232. 

Atluri, S. N., Liu, H. T., and Han, Z. D. (2006). “Meshless local Petrov-Galerkin (MLPG) 

mixed finite difference method for solid mechanics.” Computer modeling in 

engineering and sciences, 15(1), 1. 



www.manaraa.com

119 

 

Atluri, S. N., and Zhu, T. (1998). “A new meshless local Petrov-Galerkin (MLPG) 

approach in computational mechanics.” Computational mechanics, 22(2), 117-127. 

Batchelor, G. K. (1973). “An introduction to fluid dynamics.” Cambridge university press, 

UK. 

Belytschko, T., Krongauz, Y., Organ, D., Fleming, M., and Krysl, P. (1996). “Meshless 

Methods: an Overview and Recent Developments.” Computer methods in applied 

mechanics and engineering, 139(1), 3-47. 

Belytschko, T., Lu, Y. Y., and Gu, L. (1994). “Element‐free Galerkin methods.” 

International journal for numerical methods in engineering, 37(2), 229-256. 

Bingham, E. C. (1922). “Fluidity and plasticity.” McGraw-Hill Book Co., Inc., New York, 

N.Y. 

Cao, Z., Pender, G., Wallis, S., and Carling, P. (2004). “Computational dam-break 

hydraulics over erodible sediment bed.” Journal of hydraulic engineering, 130(7), 689-

703. 

Capone, T., Panizzo, A. and Monaghan, J. (2010). “SPH modelling of water waves 

generated by submarine landslides.” Journal of hydraulic research, 48(1), 80-84. 

Chen, l. (2014). “Navier-Stokes equations for fluid dynamics.” University of 

California, Irvine.  

Chen, W. H., and Guo, X. M. (2001). “Element free Galerkin method for three-dimensional 

structural analysis.” Computer modeling in engineering and sciences, 2(4), 497-508. 

Chikazawa, Y., Koshizuka, S., and Oka, Y., 2001. “A particle method for elastic and visco-

plastic structures and fluid-structure interactions.” Computational Mechanics, 27(2), 

97-106. 



www.manaraa.com

120 

 

Colagrossi, A., and Landrini, M. (2003). “Numerical simulation of interfacial flows by 

smoothed particle hydrodynamics.” Journal of Computational Physics, 191(2), 448-

475. 

Courant, R., Friedrichs, K., and Lewy, H. (1967). “On the partial difference equations of 

mathematical physics.” IBM journal of Research and Development, 11(2), 215-234. 

Cummins, S. J., and Rudman, M. (1999). “An SPH projection method.” Journal of 

computational physics, 152(2), 584-607. 

Dalrymple, R. A., and Rogers, B. D. (2006). “Numerical modeling of water waves with the 

SPH method.” Coastal engineering, 53(2), 141-147. 

Didenkulova, I., Nikolkina, I., Pelinovsky, E., and Zahibo, N. (2010). “Tsunami waves 

generated by submarine landslides of variable volume: Analytical solutions for a basin 

of variable depth.” Natural Hazards and Earth System Science, 10(11), 2407-2419. 

Enet, F., and Grilli, S. T. (2007). “Experimental study of tsunami generation by three-

dimensional rigid underwater landslides.” Journal of Waterway, Port, Coastal, and 

Ocean Engineering, 133(6), 442-454. 

Gingold, R. A., and Monaghan, J. J. (1977). “Smoothed particle hydrodynamics: theory 

and application to non-spherical stars.” Monthly notices of the royal astronomical 

society, 181(3), 375-389. 

Gotoh, H., Ikari, H., Memita, T., and Sakai, T. (2005). “Lagrangian particle method for 

simulation of wave overtopping on a vertical seawall,” Coastal Engineering Journal, 

47(02n03), 157-181. 

Farhadi, L. (2003). “Numerical Modeling of Irregular Free Surface Flow Using a Fully 

Lagrangian Method.” Master Thesis, Sharif University of Technology, Tehran, Iran. 



www.manaraa.com

121 

 

Grilli, S. T., and Watts, P. (1999). “Modeling of waves generated by a moving submerged 

body. Applications to underwater landslides.” Engineering Analysis with Boundary 

Elements, 23(8), 645-656. 

Heinrich, P. (1992). “Nonlinear water waves generated by submarine and aerial 

landslides.” Journal of Waterway, Port, Coastal, and Ocean Engineering, 118(3), 249-

266. 

Heo, S., Koshizuka, S., and Oka, Y. (2002). “Numerical analysis of boiling on high heat-

flux and high subcooling condition using MPS-MAFL,” International Journal of Heat 

and Mass Transfer, 45(13), 2633-2642. 

Hirt, C. W., and Nichols, B. D. (1981). “Volume of fluid (VOF) method for the dynamics 

of free boundaries.” Journal of computational physics, 39(1), 201-225. 

Hu, X. Y., and Adams, N. A. (2007). “An incompressible multi-phase SPH method.” 

Journal of Computational Physics, 227(1), 264-278. 

Hu, X. Y., and Adams, N. A. (2009). “A constant-density approach for incompressible 

multi-phase SPH.” Journal of Computational Physics, 228(6), 2082-2091. 

Huang, Y., Zhang, W., Xu, Q., Xie, P., and Hao, L. (2012). “Run-out analysis of flow-like 

landslides triggered by the Ms 8.0 2008 Wenchuan earthquake using smoothed particle 

hydrodynamics.” Landslides, 9(2), 275-283. 

Idelsohn, S. R., Onate, E., Del Pin, F., and Calvo, N. (2002). “Lagrangian formulations: the 

only way to solve some free-surface fluid mechanics problems,” Fifth World Congress 

on Computational Mechanics, H. A. Mang, F. G. Rammerstorfer, J. Eberhardsteiner, 

eds., Viena. 



www.manaraa.com

122 

 

Iwasaki, S. I. (1982). “Experimental study of a tsunami generated by a horizontal motion of 

a sloping bottom.” Bulletin of the Earthquake Research Institute, 57, 239-262. 

Iwasaki, S. (1997). “The wave forms and directivity of a tsunami generated by an 

earthquake and a landslide.” Science of Tsunami Hazards, 15(1), 23-40. 

Jiang, L., and LeBlond, P. H. (1992). “The coupling of a submarine slide and the surface 

waves which it generates.” Journal of Geophysical Research: Oceans (1978–2012), 

97(C8), 12731-12744. 

Khayyer, A., and Gotoh, H. (2009). “Modified moving particle semi-implicit methods for 

the prediction of 2D wave impact pressure.” Coastal Engineering, 56(4), 419-440. 

Khayyer, A., and Gotoh, H. (2011). “Enhancement of stability and accuracy of the moving 

particle semi-implicit method.” Journal of Computational Physics, 230 (8), 3093-3118. 

Khayyer, A., and Gotoh, H. (2013). “Enhancement of performance and stability of MPS 

mesh-free particle method for multiphase flows characterized by high density ratios.” 

Journal of Computational Physics, 242, 211-233. 

Kondo, M., and Koshizuka, S. (2010). “Improvement of stability in moving particle semi-

implicit method.” International Journal for Numerical Methods in Fluids, 65(6), 638-

654. 

Koshizuka, S., Nobe, A., and Oka, Y. (1998). “Numerical analysis of breaking waves using 

the moving particle semi-implicit method.” International Journal for Numerical 

Methods in Fluids, 26(7), 751-769. 

Koshizuka, S., and Oka, Y. (1996). “Moving-particle semi-implicit method for 

fragmentation of incompressible fluid.” Nuclear science and engineering, 123(3), 421-

434. 



www.manaraa.com

123 

 

Koshizuka, S., Shibata, K., Tanaka, M., and Suzuki, Y. (2007). “Numerical analysis of 

fluid-structure and fluid-rigid body interactions using a particle method.” In 

ASME/JSME 2007 5th Joint Fluids Engineering Conference, 177-182.  

Laigle, D., Lachamp, P., and Naaim, M. (2007). “SPH-based numerical investigation of 

mudflow and other complex fluid flow interactions with structures.” Computational 

Geosciences, 11(4), 297-306. 

Lancaster, P., and Salkauskas, K. (1986). Curve and surface fitting. Academic press. 

Larroude, P., and Oudart, T. (2012). “SPH model to simulate movement of grass meadow 

of Posidonia under waves.” Coastal Engineering Proceedings, 1(33), waves-56. 

Lee, E. S., Moulinec, C., Xu, R., Violeau, D., Laurence, D., and Stansby, P. (2008). 

“Comparisons of weakly compressible and truly incompressible algorithms for the SPH 

mesh free particle method.” Journal of computational physics, 227(18), 8417-8436. 

Lee, J. J., Skjelbreia, J. E., and Raichlen, F. (1982). “Measurement of velocities in solitary 

waves.” Journal of the Waterway Port Coastal and Ocean Division, 108(2), 200-218. 

Li, S., and Liu, W. K., (2002). “Meshfree and particle methods and their applications.” 

Applied Mechanics Reviews, 55(1), 1-34. 

Lin, H., and Atluri, S. N. (2001). “The meshless local Petrov-Galerkin (MLPG) method for 

solving incompressible Navier-Stokes equations.” CMES- Computer Modeling in 

Engineering and Sciences, 2(2), 117-142. 

Liu, G. R. (2010). “Meshfree methods: moving beyond the finite element method.” CRC 

press. 

Liu, G. R., and Gu, Y. T. (2005). “An introduction to meshfree methods and their 

programming.” Springer. 



www.manaraa.com

124 

 

Liu, Y. N., Liu, Y., and Cen, Z. (2008). Daubechies wavelet meshless method for 2-D 

elastic problems. Tsinghua Science & Technology, 13(5), 605-608. 

Löhner, R., Sacco, C., Onate, E., and Idelsohn, S. (2002). “A finite point method for 

compressible flow.” International Journal for Numerical Methods in Engineering, 

53(8), 1765-1779. 

Lucy, L. B. (1977). “A numerical approach to the testing of the fission hypothesis.” The 

astronomical journal, 82, 1013-1024. 

Martin, J. C., and Moyce, W. J. (1952). “Part IV. An experimental study of the collapse of 

liquid columns on a rigid horizontal plane.” Philosophical Transactions of the Royal 

Society of London. Series A, Mathematical and Physical Sciences, 244(882), 312-324. 

Moin, P. (2010). “Fundamentals of engineering numerical analysis.” Cambridge University 

Press.  

Monaghan, J. J. (1988). “An introduction to SPH.” Computer physics communications, 

48(1), 89-96. 

Monaghan, J. J. (1994). “Simulating free surface flows with SPH.” Journal of 

computational physics, 110(2), 399-406. 

Monaghan, J. J. (2005). “Smoothed particle hydrodynamics. Reports on progress in 

physics.” 68(8), 1703. 

Monaghan, J. J., Cas, R. A. F., Kos, A. M., and Hallworth, M. (1999). “Gravity currents 

descending a ramp in a stratified tank.” Journal of Fluid Mechanics, 379, 39-69. 

Monaghan, J. J., and Kos, A. (2000). “Scott Russell’s wave generator.” Physics of Fluids, 

12(3), 622-630. 



www.manaraa.com

125 

 

Nabian, M. A., and Farhadi, L. (2014a). “Numerical Simulation of Solitary Wave Using the 

Fully Lagrangian Method of Moving Particle Semi Implicit.” In Proceedings of the 

ASME 2014 4th Joint US-European Fluids Engineering Division Summer Meeting, 

V01DT30A006-V01DT30A017, American Society of Mechanical Engineers. 

Nabian, M. A., and Farhadi, L. (2014b). “Stable Moving Particle Semi Implicit Method for 

Modeling Waves Generated by Submarine Landslides.” In Proceedings of the ASME 

2014 International Mechanical Engineering Congress & Exposition, V007T09A019-

V007T09A028, American Society of Mechanical Engineers. 

Nabian, M. A., and Farhadi, L. (2014c). “Simulating water waves generated by underwater 

landslide with MPS and WC-MPS.” Proceedings of the 11th International Conference 

on Hydrodynamics, ICHD, Singapore, 859-866. 

Nayroles, B., Touzot, G., and Villon, P. (1992). “Generalizing the finite element method: 

diffuse approximation and diffuse elements.” Computational mechanics, 10(5), 307-

318. 

Nguyen, V. P., Rabczuk, T., Bordas, S., and Duflot, M. (2008). “Meshless methods: a 

review and computer implementation aspects.” Mathematics and computers in 

simulation, 79(3), 763-813. 

Noda, E. (1970). “Water waves generated by landslides.” Journal of the Waterways, 

Harbors and Coastal Engineering Division, 96(4), 835-855. 

Onate, E., and Idelsohn, S. (1998). “A mesh-free finite point method for advective-

diffusive transport and fluid flow problems.” Computational Mechanics, 21(4-5), 283-

292. 



www.manaraa.com

126 

 

Onate, E., Idelsohn, S., Zienkiewicz, O. C., Taylor, R. L., and Sacco, C. (1996). “A 

stabilized finite point method for analysis of fluid mechanics problems”. Computer 

Methods in Applied Mechanics and Engineering, 139(1), 315-346. 

Onate, E., Sacco, C., and Idelsohn, S. (2000). A finite point method for incompressible 

flow problems. Computing and visualization in science, 3(1-2), 67-75. 

Pastor, M., Haddad, B., Sorbino, G., Cuomo, S., and Drempetic, V. (2009). “A 

depth‐integrated, coupled SPH model for flow‐like landslides and related phenomena.” 

International Journal for numerical and analytical methods in geomechanics, 33(2), 

143-172. 

Rzadkiewicz, S. A., Mariotti, C., and Heinrich, P. (1997). “Numerical simulation of 

submarine landslides and their hydraulic effects.” Journal of Waterway, Port, Coastal, 

and Ocean Engineering, 123(4), 149-157. 

Robortella, M. S., Kazuo, N. and Cheng, L. Y. (2009). “Dynamic analyzes of elastic 

structures by using moving particle semi-implicit method (MPS).” 20th International 

Congress of Mechanical Engineering, Gramado, RS, Brazil. 

Ruparel, T., Eskandarian, A., and Lee, J. (2012, November). “Multiple Grid and Multiple 

Time-Scale (MGMT) Simulations in Continuum Mechanics.” In ASME 2012 

International Mechanical Engineering Congress and Exposition, 515-527, American 

Society of Mechanical Engineers. 

Shakibaeinia, A. (2011). “A Mesh-Free Lagrangian Method for Free Surface and 

Interfacial Flows.” University of Regina, Regina.  



www.manaraa.com

127 

 

Shakibaeinia, A., and Jin, Y. C. (2010). “A weakly compressible MPS method for 

modeling of open‐boundary free‐surface flow.” International journal for numerical 

methods in fluids, 63(10), 1208-1232. 

Shakibaeinia, A., and Jin, Y. C. (2011). “A mesh-free particle model for simulation of 

mobile-bed dam break.” Advances in Water Resources, 34(6), 794-807. 

Shakibaeinia, A., and Jin, Y. C. (2012). “MPS mesh-free particle method for multiphase 

flows.” Computer Methods in Applied Mechanics and Engineering, 229, 13-26. 

Shao, S. (2012). “Incompressible smoothed particle hydrodynamics simulation of 

multifluid flows.” International Journal for Numerical Methods in Fluids, 69(11), 1715-

1735. 

Shao, S., and Lo, E. Y. (2003). “Incompressible SPH method for simulating Newtonian and 

non-Newtonian flows with a free surface.” Advances in Water Resources, 26(7), 787-

800. 

Shibata, K., and Koshizuka, S. (2007). “Numerical analysis of shipping water impact on a 

deck using a particle method,” Ocean Engineering, 34(3), 585-593. 

Shobeyri, G., and Afshar, M. H. (2010). Simulating free surface problems using discrete 

least squares meshless method. Computers & Fluids, 39(3), 461-470. 

Singh, A., Singh, I. V., and Prakash, R. (2007). “Meshless element free Galerkin method 

for unsteady nonlinear heat transfer problems.” International Journal of Heat and Mass 

Transfer, 50(5), 1212-1219. 

Spinewine, B. (2005). “Two-layer flow behaviour and the effects of granular dilatancy in 

dam-break induced sheet-flow.” Ph.D. Thesis, Université catholique de Louvain, 

Belgium. 



www.manaraa.com

128 

 

Sturm, T. W. (2010). “Open channel hydraulics.” McGraw-Hill Higher Education. 

Sun, Z., Xi, G., and Chen, X. (2009). “A numerical study of stir mixing of liquids with 

particle method,” Chemical Engineering Science, 64(2), 341-350. 

Tsubota, K. I., Wada, S., Kamada, H., Kitagawa, Y., Lima, R., and Yamaguchi, T. (2006). 

“A particle method for blood flow simulation: application to flowing red blood cells 

and platelets,” Journal of Earth Simulator, 5, 2-7. 

Violeau, D., Buvat, C., Abed-Meraïm, K., and De Nanteuil, E. (2007). “Numerical 

modelling of boom and oil spill with SPH.” Coastal Engineering, 54(12), 895-913. 

Visser, D. C., Hoefsloot, H. C., and Iedema, P. D. (2006). “Modelling multi-viscosity 

systems with dissipative particle dynamics.” Journal of computational Physics, 214(2), 

491-504. 

Wahba, G. (1979). “How to Smooth Curves and Surfaces with Splines and Cross-

Validation.” 24th conference on the design of experiments, US army research office, 

North Carolina, 167-192. 

Watts, P. (1997). “Water waves generated by underwater landslides.” Ph.D. Thesis, 

California Institute of Technology, Pasadena, CA. 

Wiegel, R. L. (1955). “Laboratory studies of gravity waves generated by the movement of 

a submerged body.” Transactions of the American Geophysical Union, 36(5), 759-774. 

Xia, J., Lin, B., Falconer, R. A., and Wang, G. (2010). “Modelling dam-break flows over 

mobile beds using a 2D coupled approach.” Advances in Water Resources, 33(2), 171-

183. 



www.manaraa.com

129 

 

Young Yoon, H., Koshizuka, S., and Oka, Y. (1999). “A particle–gridless hybrid method 

for incompressible flows.” International Journal for Numerical Methods in Fluids, 

30(4), 407-424. 

Zienkiewicz, O. C., and Codina, R. (1995). “A general algorithm for compressible and 

incompressible flow—Part I. the split, characteristic‐based scheme.” International Journal 

for Numerical Methods in Fluids, 20(8‐9), 869-885. 



www.manaraa.com

130 

 

Appendix 

Associated Publications 

1. Nabian, M. A., and Farhadi, L. “Mesh-Free Lagrangian Modeling of Water Waves 

Generated by Landslides.” In preparation. 

2. Nabian, M. A., and Farhadi, L., “Multiphase Mesh-Free Particle Method for Simulation 

of Granular Flows and Sediment Transport.” In preparation. 

3. Nabian, M. A., and Farhadi, L., “Multiple-Resolution Simulation of Free Surface Flows 

by MPS.” In preparation. 

4. Nabian, M. A., and Farhadi, L. (2014). “Numerical Simulation of Solitary Wave Using 

the Fully Lagrangian Method of Moving Particle Semi Implicit.” In Proceedings of the 

ASME 2014 4th Joint US-European Fluids Engineering Division Summer Meeting, 

V01DT30A006-V01DT30A017, American Society of Mechanical Engineers. 

doi:10.1115/fedsm2014-22237. 

5. Nabian, M. A., and Farhadi, L. (2014). “Stable Moving Particle Semi Implicit Method 

for Modeling Waves Generated by Submarine Landslides.” In Proceedings of the 

ASME 2014 International Mechanical Engineering Congress & Exposition, 

V007T09A019-V007T09A028, American Society of Mechanical Engineers. 

doi:10.1115/IMECE2014-22237. 

6. Nabian, M. A., and Farhadi, L., (2014). “Simulating Water Waves Generated by 

Underwater Landslide with MPS and WC-MPS.” In Proceedings of the 11th 



www.manaraa.com

131 

 

International Conference on Hydrodynamics, ICHD, Singapore, 859-866. ISBN 978-

981-09-2175-0. 

7.   Nabian, M. A., and Farhadi, L. (2015). “A multiphase mesh-free particle method for 

modeling sediment transport via dam-break.” In Proceedings of the 2015 ASME-

JSME-KSME Joint Fluid Engineering Conference, In Press. 


	Dedication
	Acknowledgments
	Abstract of Thesis
	Chapter 1 : Introduction
	1.1. Computational fluid dynamics
	1.2. Free surface flow
	1.3. Eulerian and Lagrangian viewpoints
	1.4. Mesh-free particle methods
	1.5. Research Objective
	1.6. Organization of thesis

	Chapter 2 : Fundamentals of the MPS Method
	2.1. Governing Equations
	2.2. MPS Interpolations
	2.3. Solution Method
	2.3.1. Time splitting
	2.3.2. Prediction step
	2.3.3. Pressure Poisson equation
	2.3.4. Correction step

	2.4. Weakly compressible model
	2.5. Boundary Treatment

	Chapter 3 : Landslide-Induced Water Waves
	3.1. Vertical Landslide Simulation
	3.1.1. Problem definition
	3.1.2. Results and Analysis
	3.1.3. Stability of the model

	3.2. Submarine Landslide Simulation
	3.2.1. Introduction to the Problem
	3.2.2. Results and Analysis
	3.2.3. Results of the WC-MPS simulation

	3.3. Introduction to multiple-size particle technique
	3.4. Summary

	Chapter 4 : Multiphase MPS Method for Granular Flows
	4.1. Multiphase MPS Formulation
	4.2. Granular Media Rheology
	4.3. Boundary Treatment
	4.4. Deformable Submarine Landslide
	4.5. Dam-Break over an Erodible Bed
	4.6. Summary

	Chapter 5 : Multiple-Size Particle Algorithm for Mesh-Free Methods
	5.1. Problem Definition
	5.2. Mechanism of fine-region coarse-region interaction
	5.3. Calculation of the particle number density
	5.4. Dam-break induced water waves
	5.5. Landslide-induced water waves
	5.6. Summary

	Chapter 6 : Conclusion and Recommendation
	6.1. Major contributions
	6.2. Recommendations for future work
	6.2.1. Efficiency
	6.2.2. Accuracy and Stability
	6.2.3. Applicability



